*> \brief \b CHPR2 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE CHPR2(UPLO,N,ALPHA,X,INCX,Y,INCY,AP) * * .. Scalar Arguments .. * COMPLEX ALPHA * INTEGER INCX,INCY,N * CHARACTER UPLO * .. * .. Array Arguments .. * COMPLEX AP(*),X(*),Y(*) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CHPR2 performs the hermitian rank 2 operation *> *> A := alpha*x*y**H + conjg( alpha )*y*x**H + A, *> *> where alpha is a scalar, x and y are n element vectors and A is an *> n by n hermitian matrix, supplied in packed form. *> \endverbatim * * Arguments: * ========== * *> \param[in] UPLO *> \verbatim *> UPLO is CHARACTER*1 *> On entry, UPLO specifies whether the upper or lower *> triangular part of the matrix A is supplied in the packed *> array AP as follows: *> *> UPLO = 'U' or 'u' The upper triangular part of A is *> supplied in AP. *> *> UPLO = 'L' or 'l' The lower triangular part of A is *> supplied in AP. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> On entry, N specifies the order of the matrix A. *> N must be at least zero. *> \endverbatim *> *> \param[in] ALPHA *> \verbatim *> ALPHA is COMPLEX *> On entry, ALPHA specifies the scalar alpha. *> \endverbatim *> *> \param[in] X *> \verbatim *> X is COMPLEX array of dimension at least *> ( 1 + ( n - 1 )*abs( INCX ) ). *> Before entry, the incremented array X must contain the n *> element vector x. *> \endverbatim *> *> \param[in] INCX *> \verbatim *> INCX is INTEGER *> On entry, INCX specifies the increment for the elements of *> X. INCX must not be zero. *> \endverbatim *> *> \param[in] Y *> \verbatim *> Y is COMPLEX array of dimension at least *> ( 1 + ( n - 1 )*abs( INCY ) ). *> Before entry, the incremented array Y must contain the n *> element vector y. *> \endverbatim *> *> \param[in] INCY *> \verbatim *> INCY is INTEGER *> On entry, INCY specifies the increment for the elements of *> Y. INCY must not be zero. *> \endverbatim *> *> \param[in,out] AP *> \verbatim *> AP is COMPLEX array of DIMENSION at least *> ( ( n*( n + 1 ) )/2 ). *> Before entry with UPLO = 'U' or 'u', the array AP must *> contain the upper triangular part of the hermitian matrix *> packed sequentially, column by column, so that AP( 1 ) *> contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) *> and a( 2, 2 ) respectively, and so on. On exit, the array *> AP is overwritten by the upper triangular part of the *> updated matrix. *> Before entry with UPLO = 'L' or 'l', the array AP must *> contain the lower triangular part of the hermitian matrix *> packed sequentially, column by column, so that AP( 1 ) *> contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) *> and a( 3, 1 ) respectively, and so on. On exit, the array *> AP is overwritten by the lower triangular part of the *> updated matrix. *> Note that the imaginary parts of the diagonal elements need *> not be set, they are assumed to be zero, and on exit they *> are set to zero. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date November 2011 * *> \ingroup complex_blas_level2 * *> \par Further Details: * ===================== *> *> \verbatim *> *> Level 2 Blas routine. *> *> -- Written on 22-October-1986. *> Jack Dongarra, Argonne National Lab. *> Jeremy Du Croz, Nag Central Office. *> Sven Hammarling, Nag Central Office. *> Richard Hanson, Sandia National Labs. *> \endverbatim *> * ===================================================================== SUBROUTINE CHPR2(UPLO,N,ALPHA,X,INCX,Y,INCY,AP) * * -- Reference BLAS level2 routine (version 3.4.0) -- * -- Reference BLAS is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2011 * * .. Scalar Arguments .. COMPLEX ALPHA INTEGER INCX,INCY,N CHARACTER UPLO * .. * .. Array Arguments .. COMPLEX AP(*),X(*),Y(*) * .. * * ===================================================================== * * .. Parameters .. COMPLEX ZERO PARAMETER (ZERO= (0.0E+0,0.0E+0)) * .. * .. Local Scalars .. COMPLEX TEMP1,TEMP2 INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC CONJG,REAL * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (N.LT.0) THEN INFO = 2 ELSE IF (INCX.EQ.0) THEN INFO = 5 ELSE IF (INCY.EQ.0) THEN INFO = 7 END IF IF (INFO.NE.0) THEN CALL XERBLA('CHPR2 ',INFO) RETURN END IF * * Quick return if possible. * IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN * * Set up the start points in X and Y if the increments are not both * unity. * IF ((INCX.NE.1) .OR. (INCY.NE.1)) THEN IF (INCX.GT.0) THEN KX = 1 ELSE KX = 1 - (N-1)*INCX END IF IF (INCY.GT.0) THEN KY = 1 ELSE KY = 1 - (N-1)*INCY END IF JX = KX JY = KY END IF * * Start the operations. In this version the elements of the array AP * are accessed sequentially with one pass through AP. * KK = 1 IF (LSAME(UPLO,'U')) THEN * * Form A when upper triangle is stored in AP. * IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 20 J = 1,N IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN TEMP1 = ALPHA*CONJG(Y(J)) TEMP2 = CONJG(ALPHA*X(J)) K = KK DO 10 I = 1,J - 1 AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2 K = K + 1 10 CONTINUE AP(KK+J-1) = REAL(AP(KK+J-1)) + + REAL(X(J)*TEMP1+Y(J)*TEMP2) ELSE AP(KK+J-1) = REAL(AP(KK+J-1)) END IF KK = KK + J 20 CONTINUE ELSE DO 40 J = 1,N IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN TEMP1 = ALPHA*CONJG(Y(JY)) TEMP2 = CONJG(ALPHA*X(JX)) IX = KX IY = KY DO 30 K = KK,KK + J - 2 AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2 IX = IX + INCX IY = IY + INCY 30 CONTINUE AP(KK+J-1) = REAL(AP(KK+J-1)) + + REAL(X(JX)*TEMP1+Y(JY)*TEMP2) ELSE AP(KK+J-1) = REAL(AP(KK+J-1)) END IF JX = JX + INCX JY = JY + INCY KK = KK + J 40 CONTINUE END IF ELSE * * Form A when lower triangle is stored in AP. * IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 60 J = 1,N IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN TEMP1 = ALPHA*CONJG(Y(J)) TEMP2 = CONJG(ALPHA*X(J)) AP(KK) = REAL(AP(KK)) + + REAL(X(J)*TEMP1+Y(J)*TEMP2) K = KK + 1 DO 50 I = J + 1,N AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2 K = K + 1 50 CONTINUE ELSE AP(KK) = REAL(AP(KK)) END IF KK = KK + N - J + 1 60 CONTINUE ELSE DO 80 J = 1,N IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN TEMP1 = ALPHA*CONJG(Y(JY)) TEMP2 = CONJG(ALPHA*X(JX)) AP(KK) = REAL(AP(KK)) + + REAL(X(JX)*TEMP1+Y(JY)*TEMP2) IX = JX IY = JY DO 70 K = KK + 1,KK + N - J IX = IX + INCX IY = IY + INCY AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2 70 CONTINUE ELSE AP(KK) = REAL(AP(KK)) END IF JX = JX + INCX JY = JY + INCY KK = KK + N - J + 1 80 CONTINUE END IF END IF * RETURN * * End of CHPR2 . * END