/* LAPACKE_dgesv Example ===================== The program computes the solution to the system of linear equations with a square matrix A and multiple right-hand sides B, where A is the coefficient matrix and b is the right-hand side matrix: Description =========== The routine solves for X the system of linear equations A*X = B, where A is an n-by-n matrix, the columns of matrix B are individual right-hand sides, and the columns of X are the corresponding solutions. The LU decomposition with partial pivoting and row interchanges is used to factor A as A = P*L*U, where P is a permutation matrix, L is unit lower triangular, and U is upper triangular. The factored form of A is then used to solve the system of equations A*X = B. LAPACKE Interface ================= LAPACKE_dgesv (col-major, high-level) Example Program Results -- LAPACKE Example routine (version 3.6.0) -- -- LAPACK is a software package provided by Univ. of Tennessee, -- -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- November 2015 */ /* Includes */ #include #include #include #include "lapacke.h" #include "lapacke_example_aux.h" /* Main program */ int main(int argc, char **argv) { /* Locals */ lapack_int n, nrhs, lda, ldb, info; int i, j; /* Local arrays */ double *A, *b; lapack_int *ipiv; /* Default Value */ n = 5; nrhs = 1; /* Arguments */ for( i = 1; i < argc; i++ ) { if( strcmp( argv[i], "-n" ) == 0 ) { n = atoi(argv[i+1]); i++; } if( strcmp( argv[i], "-nrhs" ) == 0 ) { nrhs = atoi(argv[i+1]); i++; } } /* Initialization */ lda=n, ldb=n; A = (double *)malloc(n*n*sizeof(double)) ; if (A==NULL){ printf("error of memory allocation\n"); exit(0); } b = (double *)malloc(n*nrhs*sizeof(double)) ; if (b==NULL){ printf("error of memory allocation\n"); exit(0); } ipiv = (lapack_int *)malloc(n*sizeof(lapack_int)) ; if (ipiv==NULL){ printf("error of memory allocation\n"); exit(0); } for( i = 0; i < n; i++ ) { for( j = 0; j < n; j++ ) A[i+j*lda] = ((double) rand()) / ((double) RAND_MAX) - 0.5; } for(i=0;i 0 ) { printf( "The diagonal element of the triangular factor of A,\n" ); printf( "U(%i,%i) is zero, so that A is singular;\n", info, info ); printf( "the solution could not be computed.\n" ); exit( 1 ); } if (info <0) exit( 1 ); /* Print solution */ print_matrix_colmajor( "Solution", n, nrhs, b, ldb ); /* Print details of LU factorization */ print_matrix_colmajor( "Details of LU factorization", n, n, A, lda ); /* Print pivot indices */ print_vector( "Pivot indices", n, ipiv ); exit( 0 ); } /* End of LAPACKE_dgesv Example */