*> \brief \b CTREXC * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download CTREXC + dependencies *> *> [TGZ] *> *> [ZIP] *> *> [TXT] *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE CTREXC( COMPQ, N, T, LDT, Q, LDQ, IFST, ILST, INFO ) * * .. Scalar Arguments .. * CHARACTER COMPQ * INTEGER IFST, ILST, INFO, LDQ, LDT, N * .. * .. Array Arguments .. * COMPLEX Q( LDQ, * ), T( LDT, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CTREXC reorders the Schur factorization of a complex matrix *> A = Q*T*Q**H, so that the diagonal element of T with row index IFST *> is moved to row ILST. *> *> The Schur form T is reordered by a unitary similarity transformation *> Z**H*T*Z, and optionally the matrix Q of Schur vectors is updated by *> postmultplying it with Z. *> \endverbatim * * Arguments: * ========== * *> \param[in] COMPQ *> \verbatim *> COMPQ is CHARACTER*1 *> = 'V': update the matrix Q of Schur vectors; *> = 'N': do not update Q. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrix T. N >= 0. *> \endverbatim *> *> \param[in,out] T *> \verbatim *> T is COMPLEX array, dimension (LDT,N) *> On entry, the upper triangular matrix T. *> On exit, the reordered upper triangular matrix. *> \endverbatim *> *> \param[in] LDT *> \verbatim *> LDT is INTEGER *> The leading dimension of the array T. LDT >= max(1,N). *> \endverbatim *> *> \param[in,out] Q *> \verbatim *> Q is COMPLEX array, dimension (LDQ,N) *> On entry, if COMPQ = 'V', the matrix Q of Schur vectors. *> On exit, if COMPQ = 'V', Q has been postmultiplied by the *> unitary transformation matrix Z which reorders T. *> If COMPQ = 'N', Q is not referenced. *> \endverbatim *> *> \param[in] LDQ *> \verbatim *> LDQ is INTEGER *> The leading dimension of the array Q. LDQ >= max(1,N). *> \endverbatim *> *> \param[in] IFST *> \verbatim *> IFST is INTEGER *> \endverbatim *> *> \param[in] ILST *> \verbatim *> ILST is INTEGER *> *> Specify the reordering of the diagonal elements of T: *> The element with row index IFST is moved to row ILST by a *> sequence of transpositions between adjacent elements. *> 1 <= IFST <= N; 1 <= ILST <= N. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: if INFO = -i, the i-th argument had an illegal value *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date November 2011 * *> \ingroup complexOTHERcomputational * * ===================================================================== SUBROUTINE CTREXC( COMPQ, N, T, LDT, Q, LDQ, IFST, ILST, INFO ) * * -- LAPACK computational routine (version 3.4.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2011 * * .. Scalar Arguments .. CHARACTER COMPQ INTEGER IFST, ILST, INFO, LDQ, LDT, N * .. * .. Array Arguments .. COMPLEX Q( LDQ, * ), T( LDT, * ) * .. * * ===================================================================== * * .. Local Scalars .. LOGICAL WANTQ INTEGER K, M1, M2, M3 REAL CS COMPLEX SN, T11, T22, TEMP * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL CLARTG, CROT, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC CONJG, MAX * .. * .. Executable Statements .. * * Decode and test the input parameters. * INFO = 0 WANTQ = LSAME( COMPQ, 'V' ) IF( .NOT.LSAME( COMPQ, 'N' ) .AND. .NOT.WANTQ ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( LDT.LT.MAX( 1, N ) ) THEN INFO = -4 ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.MAX( 1, N ) ) ) THEN INFO = -6 ELSE IF( IFST.LT.1 .OR. IFST.GT.N ) THEN INFO = -7 ELSE IF( ILST.LT.1 .OR. ILST.GT.N ) THEN INFO = -8 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'CTREXC', -INFO ) RETURN END IF * * Quick return if possible * IF( N.EQ.1 .OR. IFST.EQ.ILST ) $ RETURN * IF( IFST.LT.ILST ) THEN * * Move the IFST-th diagonal element forward down the diagonal. * M1 = 0 M2 = -1 M3 = 1 ELSE * * Move the IFST-th diagonal element backward up the diagonal. * M1 = -1 M2 = 0 M3 = -1 END IF * DO 10 K = IFST + M1, ILST + M2, M3 * * Interchange the k-th and (k+1)-th diagonal elements. * T11 = T( K, K ) T22 = T( K+1, K+1 ) * * Determine the transformation to perform the interchange. * CALL CLARTG( T( K, K+1 ), T22-T11, CS, SN, TEMP ) * * Apply transformation to the matrix T. * IF( K+2.LE.N ) $ CALL CROT( N-K-1, T( K, K+2 ), LDT, T( K+1, K+2 ), LDT, CS, $ SN ) CALL CROT( K-1, T( 1, K ), 1, T( 1, K+1 ), 1, CS, CONJG( SN ) ) * T( K, K ) = T22 T( K+1, K+1 ) = T11 * IF( WANTQ ) THEN * * Accumulate transformation in the matrix Q. * CALL CROT( N, Q( 1, K ), 1, Q( 1, K+1 ), 1, CS, $ CONJG( SN ) ) END IF * 10 CONTINUE * RETURN * * End of CTREXC * END