*> \brief \b CTRSYL * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download CTRSYL + dependencies *> *> [TGZ] *> *> [ZIP] *> *> [TXT] *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE CTRSYL( TRANA, TRANB, ISGN, M, N, A, LDA, B, LDB, C, * LDC, SCALE, INFO ) * * .. Scalar Arguments .. * CHARACTER TRANA, TRANB * INTEGER INFO, ISGN, LDA, LDB, LDC, M, N * REAL SCALE * .. * .. Array Arguments .. * COMPLEX A( LDA, * ), B( LDB, * ), C( LDC, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CTRSYL solves the complex Sylvester matrix equation: *> *> op(A)*X + X*op(B) = scale*C or *> op(A)*X - X*op(B) = scale*C, *> *> where op(A) = A or A**H, and A and B are both upper triangular. A is *> M-by-M and B is N-by-N; the right hand side C and the solution X are *> M-by-N; and scale is an output scale factor, set <= 1 to avoid *> overflow in X. *> \endverbatim * * Arguments: * ========== * *> \param[in] TRANA *> \verbatim *> TRANA is CHARACTER*1 *> Specifies the option op(A): *> = 'N': op(A) = A (No transpose) *> = 'C': op(A) = A**H (Conjugate transpose) *> \endverbatim *> *> \param[in] TRANB *> \verbatim *> TRANB is CHARACTER*1 *> Specifies the option op(B): *> = 'N': op(B) = B (No transpose) *> = 'C': op(B) = B**H (Conjugate transpose) *> \endverbatim *> *> \param[in] ISGN *> \verbatim *> ISGN is INTEGER *> Specifies the sign in the equation: *> = +1: solve op(A)*X + X*op(B) = scale*C *> = -1: solve op(A)*X - X*op(B) = scale*C *> \endverbatim *> *> \param[in] M *> \verbatim *> M is INTEGER *> The order of the matrix A, and the number of rows in the *> matrices X and C. M >= 0. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrix B, and the number of columns in the *> matrices X and C. N >= 0. *> \endverbatim *> *> \param[in] A *> \verbatim *> A is COMPLEX array, dimension (LDA,M) *> The upper triangular matrix A. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,M). *> \endverbatim *> *> \param[in] B *> \verbatim *> B is COMPLEX array, dimension (LDB,N) *> The upper triangular matrix B. *> \endverbatim *> *> \param[in] LDB *> \verbatim *> LDB is INTEGER *> The leading dimension of the array B. LDB >= max(1,N). *> \endverbatim *> *> \param[in,out] C *> \verbatim *> C is COMPLEX array, dimension (LDC,N) *> On entry, the M-by-N right hand side matrix C. *> On exit, C is overwritten by the solution matrix X. *> \endverbatim *> *> \param[in] LDC *> \verbatim *> LDC is INTEGER *> The leading dimension of the array C. LDC >= max(1,M) *> \endverbatim *> *> \param[out] SCALE *> \verbatim *> SCALE is REAL *> The scale factor, scale, set <= 1 to avoid overflow in X. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: if INFO = -i, the i-th argument had an illegal value *> = 1: A and B have common or very close eigenvalues; perturbed *> values were used to solve the equation (but the matrices *> A and B are unchanged). *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date November 2011 * *> \ingroup complexSYcomputational * * ===================================================================== SUBROUTINE CTRSYL( TRANA, TRANB, ISGN, M, N, A, LDA, B, LDB, C, $ LDC, SCALE, INFO ) * * -- LAPACK computational routine (version 3.4.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2011 * * .. Scalar Arguments .. CHARACTER TRANA, TRANB INTEGER INFO, ISGN, LDA, LDB, LDC, M, N REAL SCALE * .. * .. Array Arguments .. COMPLEX A( LDA, * ), B( LDB, * ), C( LDC, * ) * .. * * ===================================================================== * * .. Parameters .. REAL ONE PARAMETER ( ONE = 1.0E+0 ) * .. * .. Local Scalars .. LOGICAL NOTRNA, NOTRNB INTEGER J, K, L REAL BIGNUM, DA11, DB, EPS, SCALOC, SGN, SMIN, $ SMLNUM COMPLEX A11, SUML, SUMR, VEC, X11 * .. * .. Local Arrays .. REAL DUM( 1 ) * .. * .. External Functions .. LOGICAL LSAME REAL CLANGE, SLAMCH COMPLEX CDOTC, CDOTU, CLADIV EXTERNAL LSAME, CLANGE, SLAMCH, CDOTC, CDOTU, CLADIV * .. * .. External Subroutines .. EXTERNAL CSSCAL, SLABAD, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC ABS, AIMAG, CMPLX, CONJG, MAX, MIN, REAL * .. * .. Executable Statements .. * * Decode and Test input parameters * NOTRNA = LSAME( TRANA, 'N' ) NOTRNB = LSAME( TRANB, 'N' ) * INFO = 0 IF( .NOT.NOTRNA .AND. .NOT.LSAME( TRANA, 'C' ) ) THEN INFO = -1 ELSE IF( .NOT.NOTRNB .AND. .NOT.LSAME( TRANB, 'C' ) ) THEN INFO = -2 ELSE IF( ISGN.NE.1 .AND. ISGN.NE.-1 ) THEN INFO = -3 ELSE IF( M.LT.0 ) THEN INFO = -4 ELSE IF( N.LT.0 ) THEN INFO = -5 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN INFO = -7 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -9 ELSE IF( LDC.LT.MAX( 1, M ) ) THEN INFO = -11 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'CTRSYL', -INFO ) RETURN END IF * * Quick return if possible * SCALE = ONE IF( M.EQ.0 .OR. N.EQ.0 ) $ RETURN * * Set constants to control overflow * EPS = SLAMCH( 'P' ) SMLNUM = SLAMCH( 'S' ) BIGNUM = ONE / SMLNUM CALL SLABAD( SMLNUM, BIGNUM ) SMLNUM = SMLNUM*REAL( M*N ) / EPS BIGNUM = ONE / SMLNUM SMIN = MAX( SMLNUM, EPS*CLANGE( 'M', M, M, A, LDA, DUM ), $ EPS*CLANGE( 'M', N, N, B, LDB, DUM ) ) SGN = ISGN * IF( NOTRNA .AND. NOTRNB ) THEN * * Solve A*X + ISGN*X*B = scale*C. * * The (K,L)th block of X is determined starting from * bottom-left corner column by column by * * A(K,K)*X(K,L) + ISGN*X(K,L)*B(L,L) = C(K,L) - R(K,L) * * Where * M L-1 * R(K,L) = SUM [A(K,I)*X(I,L)] +ISGN*SUM [X(K,J)*B(J,L)]. * I=K+1 J=1 * DO 30 L = 1, N DO 20 K = M, 1, -1 * SUML = CDOTU( M-K, A( K, MIN( K+1, M ) ), LDA, $ C( MIN( K+1, M ), L ), 1 ) SUMR = CDOTU( L-1, C( K, 1 ), LDC, B( 1, L ), 1 ) VEC = C( K, L ) - ( SUML+SGN*SUMR ) * SCALOC = ONE A11 = A( K, K ) + SGN*B( L, L ) DA11 = ABS( REAL( A11 ) ) + ABS( AIMAG( A11 ) ) IF( DA11.LE.SMIN ) THEN A11 = SMIN DA11 = SMIN INFO = 1 END IF DB = ABS( REAL( VEC ) ) + ABS( AIMAG( VEC ) ) IF( DA11.LT.ONE .AND. DB.GT.ONE ) THEN IF( DB.GT.BIGNUM*DA11 ) $ SCALOC = ONE / DB END IF X11 = CLADIV( VEC*CMPLX( SCALOC ), A11 ) * IF( SCALOC.NE.ONE ) THEN DO 10 J = 1, N CALL CSSCAL( M, SCALOC, C( 1, J ), 1 ) 10 CONTINUE SCALE = SCALE*SCALOC END IF C( K, L ) = X11 * 20 CONTINUE 30 CONTINUE * ELSE IF( .NOT.NOTRNA .AND. NOTRNB ) THEN * * Solve A**H *X + ISGN*X*B = scale*C. * * The (K,L)th block of X is determined starting from * upper-left corner column by column by * * A**H(K,K)*X(K,L) + ISGN*X(K,L)*B(L,L) = C(K,L) - R(K,L) * * Where * K-1 L-1 * R(K,L) = SUM [A**H(I,K)*X(I,L)] + ISGN*SUM [X(K,J)*B(J,L)] * I=1 J=1 * DO 60 L = 1, N DO 50 K = 1, M * SUML = CDOTC( K-1, A( 1, K ), 1, C( 1, L ), 1 ) SUMR = CDOTU( L-1, C( K, 1 ), LDC, B( 1, L ), 1 ) VEC = C( K, L ) - ( SUML+SGN*SUMR ) * SCALOC = ONE A11 = CONJG( A( K, K ) ) + SGN*B( L, L ) DA11 = ABS( REAL( A11 ) ) + ABS( AIMAG( A11 ) ) IF( DA11.LE.SMIN ) THEN A11 = SMIN DA11 = SMIN INFO = 1 END IF DB = ABS( REAL( VEC ) ) + ABS( AIMAG( VEC ) ) IF( DA11.LT.ONE .AND. DB.GT.ONE ) THEN IF( DB.GT.BIGNUM*DA11 ) $ SCALOC = ONE / DB END IF * X11 = CLADIV( VEC*CMPLX( SCALOC ), A11 ) * IF( SCALOC.NE.ONE ) THEN DO 40 J = 1, N CALL CSSCAL( M, SCALOC, C( 1, J ), 1 ) 40 CONTINUE SCALE = SCALE*SCALOC END IF C( K, L ) = X11 * 50 CONTINUE 60 CONTINUE * ELSE IF( .NOT.NOTRNA .AND. .NOT.NOTRNB ) THEN * * Solve A**H*X + ISGN*X*B**H = C. * * The (K,L)th block of X is determined starting from * upper-right corner column by column by * * A**H(K,K)*X(K,L) + ISGN*X(K,L)*B**H(L,L) = C(K,L) - R(K,L) * * Where * K-1 * R(K,L) = SUM [A**H(I,K)*X(I,L)] + * I=1 * N * ISGN*SUM [X(K,J)*B**H(L,J)]. * J=L+1 * DO 90 L = N, 1, -1 DO 80 K = 1, M * SUML = CDOTC( K-1, A( 1, K ), 1, C( 1, L ), 1 ) SUMR = CDOTC( N-L, C( K, MIN( L+1, N ) ), LDC, $ B( L, MIN( L+1, N ) ), LDB ) VEC = C( K, L ) - ( SUML+SGN*CONJG( SUMR ) ) * SCALOC = ONE A11 = CONJG( A( K, K )+SGN*B( L, L ) ) DA11 = ABS( REAL( A11 ) ) + ABS( AIMAG( A11 ) ) IF( DA11.LE.SMIN ) THEN A11 = SMIN DA11 = SMIN INFO = 1 END IF DB = ABS( REAL( VEC ) ) + ABS( AIMAG( VEC ) ) IF( DA11.LT.ONE .AND. DB.GT.ONE ) THEN IF( DB.GT.BIGNUM*DA11 ) $ SCALOC = ONE / DB END IF * X11 = CLADIV( VEC*CMPLX( SCALOC ), A11 ) * IF( SCALOC.NE.ONE ) THEN DO 70 J = 1, N CALL CSSCAL( M, SCALOC, C( 1, J ), 1 ) 70 CONTINUE SCALE = SCALE*SCALOC END IF C( K, L ) = X11 * 80 CONTINUE 90 CONTINUE * ELSE IF( NOTRNA .AND. .NOT.NOTRNB ) THEN * * Solve A*X + ISGN*X*B**H = C. * * The (K,L)th block of X is determined starting from * bottom-left corner column by column by * * A(K,K)*X(K,L) + ISGN*X(K,L)*B**H(L,L) = C(K,L) - R(K,L) * * Where * M N * R(K,L) = SUM [A(K,I)*X(I,L)] + ISGN*SUM [X(K,J)*B**H(L,J)] * I=K+1 J=L+1 * DO 120 L = N, 1, -1 DO 110 K = M, 1, -1 * SUML = CDOTU( M-K, A( K, MIN( K+1, M ) ), LDA, $ C( MIN( K+1, M ), L ), 1 ) SUMR = CDOTC( N-L, C( K, MIN( L+1, N ) ), LDC, $ B( L, MIN( L+1, N ) ), LDB ) VEC = C( K, L ) - ( SUML+SGN*CONJG( SUMR ) ) * SCALOC = ONE A11 = A( K, K ) + SGN*CONJG( B( L, L ) ) DA11 = ABS( REAL( A11 ) ) + ABS( AIMAG( A11 ) ) IF( DA11.LE.SMIN ) THEN A11 = SMIN DA11 = SMIN INFO = 1 END IF DB = ABS( REAL( VEC ) ) + ABS( AIMAG( VEC ) ) IF( DA11.LT.ONE .AND. DB.GT.ONE ) THEN IF( DB.GT.BIGNUM*DA11 ) $ SCALOC = ONE / DB END IF * X11 = CLADIV( VEC*CMPLX( SCALOC ), A11 ) * IF( SCALOC.NE.ONE ) THEN DO 100 J = 1, N CALL CSSCAL( M, SCALOC, C( 1, J ), 1 ) 100 CONTINUE SCALE = SCALE*SCALOC END IF C( K, L ) = X11 * 110 CONTINUE 120 CONTINUE * END IF * RETURN * * End of CTRSYL * END