*> \brief \b CUNMTR
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CUNMTR + dependencies
*>
*> [TGZ]
*>
*> [ZIP]
*>
*> [TXT]
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE CUNMTR( SIDE, UPLO, TRANS, M, N, A, LDA, TAU, C, LDC,
* WORK, LWORK, INFO )
*
* .. Scalar Arguments ..
* CHARACTER SIDE, TRANS, UPLO
* INTEGER INFO, LDA, LDC, LWORK, M, N
* ..
* .. Array Arguments ..
* COMPLEX A( LDA, * ), C( LDC, * ), TAU( * ),
* $ WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CUNMTR overwrites the general complex M-by-N matrix C with
*>
*> SIDE = 'L' SIDE = 'R'
*> TRANS = 'N': Q * C C * Q
*> TRANS = 'C': Q**H * C C * Q**H
*>
*> where Q is a complex unitary matrix of order nq, with nq = m if
*> SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of
*> nq-1 elementary reflectors, as returned by CHETRD:
*>
*> if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1);
*>
*> if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1).
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] SIDE
*> \verbatim
*> SIDE is CHARACTER*1
*> = 'L': apply Q or Q**H from the Left;
*> = 'R': apply Q or Q**H from the Right.
*> \endverbatim
*>
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> = 'U': Upper triangle of A contains elementary reflectors
*> from CHETRD;
*> = 'L': Lower triangle of A contains elementary reflectors
*> from CHETRD.
*> \endverbatim
*>
*> \param[in] TRANS
*> \verbatim
*> TRANS is CHARACTER*1
*> = 'N': No transpose, apply Q;
*> = 'C': Conjugate transpose, apply Q**H.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix C. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix C. N >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX array, dimension
*> (LDA,M) if SIDE = 'L'
*> (LDA,N) if SIDE = 'R'
*> The vectors which define the elementary reflectors, as
*> returned by CHETRD.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A.
*> LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'.
*> \endverbatim
*>
*> \param[in] TAU
*> \verbatim
*> TAU is COMPLEX array, dimension
*> (M-1) if SIDE = 'L'
*> (N-1) if SIDE = 'R'
*> TAU(i) must contain the scalar factor of the elementary
*> reflector H(i), as returned by CHETRD.
*> \endverbatim
*>
*> \param[in,out] C
*> \verbatim
*> C is COMPLEX array, dimension (LDC,N)
*> On entry, the M-by-N matrix C.
*> On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*> LDC is INTEGER
*> The leading dimension of the array C. LDC >= max(1,M).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (MAX(1,LWORK))
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK.
*> If SIDE = 'L', LWORK >= max(1,N);
*> if SIDE = 'R', LWORK >= max(1,M).
*> For optimum performance LWORK >= N*NB if SIDE = 'L', and
*> LWORK >=M*NB if SIDE = 'R', where NB is the optimal
*> blocksize.
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
*> message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complexOTHERcomputational
*
* =====================================================================
SUBROUTINE CUNMTR( SIDE, UPLO, TRANS, M, N, A, LDA, TAU, C, LDC,
$ WORK, LWORK, INFO )
*
* -- LAPACK computational routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER SIDE, TRANS, UPLO
INTEGER INFO, LDA, LDC, LWORK, M, N
* ..
* .. Array Arguments ..
COMPLEX A( LDA, * ), C( LDC, * ), TAU( * ),
$ WORK( * )
* ..
*
* =====================================================================
*
* .. Local Scalars ..
LOGICAL LEFT, LQUERY, UPPER
INTEGER I1, I2, IINFO, LWKOPT, MI, NB, NI, NQ, NW
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ILAENV
EXTERNAL ILAENV, LSAME
* ..
* .. External Subroutines ..
EXTERNAL CUNMQL, CUNMQR, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Executable Statements ..
*
* Test the input arguments
*
INFO = 0
LEFT = LSAME( SIDE, 'L' )
UPPER = LSAME( UPLO, 'U' )
LQUERY = ( LWORK.EQ.-1 )
*
* NQ is the order of Q and NW is the minimum dimension of WORK
*
IF( LEFT ) THEN
NQ = M
NW = N
ELSE
NQ = N
NW = M
END IF
IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
INFO = -1
ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -2
ELSE IF( .NOT.LSAME( TRANS, 'N' ) .AND. .NOT.LSAME( TRANS, 'C' ) )
$ THEN
INFO = -3
ELSE IF( M.LT.0 ) THEN
INFO = -4
ELSE IF( N.LT.0 ) THEN
INFO = -5
ELSE IF( LDA.LT.MAX( 1, NQ ) ) THEN
INFO = -7
ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
INFO = -10
ELSE IF( LWORK.LT.MAX( 1, NW ) .AND. .NOT.LQUERY ) THEN
INFO = -12
END IF
*
IF( INFO.EQ.0 ) THEN
IF( UPPER ) THEN
IF( LEFT ) THEN
NB = ILAENV( 1, 'CUNMQL', SIDE // TRANS, M-1, N, M-1,
$ -1 )
ELSE
NB = ILAENV( 1, 'CUNMQL', SIDE // TRANS, M, N-1, N-1,
$ -1 )
END IF
ELSE
IF( LEFT ) THEN
NB = ILAENV( 1, 'CUNMQR', SIDE // TRANS, M-1, N, M-1,
$ -1 )
ELSE
NB = ILAENV( 1, 'CUNMQR', SIDE // TRANS, M, N-1, N-1,
$ -1 )
END IF
END IF
LWKOPT = MAX( 1, NW )*NB
WORK( 1 ) = LWKOPT
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CUNMTR', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
IF( M.EQ.0 .OR. N.EQ.0 .OR. NQ.EQ.1 ) THEN
WORK( 1 ) = 1
RETURN
END IF
*
IF( LEFT ) THEN
MI = M - 1
NI = N
ELSE
MI = M
NI = N - 1
END IF
*
IF( UPPER ) THEN
*
* Q was determined by a call to CHETRD with UPLO = 'U'
*
CALL CUNMQL( SIDE, TRANS, MI, NI, NQ-1, A( 1, 2 ), LDA, TAU, C,
$ LDC, WORK, LWORK, IINFO )
ELSE
*
* Q was determined by a call to CHETRD with UPLO = 'L'
*
IF( LEFT ) THEN
I1 = 2
I2 = 1
ELSE
I1 = 1
I2 = 2
END IF
CALL CUNMQR( SIDE, TRANS, MI, NI, NQ-1, A( 2, 1 ), LDA, TAU,
$ C( I1, I2 ), LDC, WORK, LWORK, IINFO )
END IF
WORK( 1 ) = LWKOPT
RETURN
*
* End of CUNMTR
*
END