*> \brief \b DLAEBZ computes the number of eigenvalues of a real symmetric tridiagonal matrix which are less than or equal to a given value, and performs other tasks required by the routine sstebz.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DLAEBZ + dependencies
*>
*> [TGZ]
*>
*> [ZIP]
*>
*> [TXT]
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE DLAEBZ( IJOB, NITMAX, N, MMAX, MINP, NBMIN, ABSTOL,
* RELTOL, PIVMIN, D, E, E2, NVAL, AB, C, MOUT,
* NAB, WORK, IWORK, INFO )
*
* .. Scalar Arguments ..
* INTEGER IJOB, INFO, MINP, MMAX, MOUT, N, NBMIN, NITMAX
* DOUBLE PRECISION ABSTOL, PIVMIN, RELTOL
* ..
* .. Array Arguments ..
* INTEGER IWORK( * ), NAB( MMAX, * ), NVAL( * )
* DOUBLE PRECISION AB( MMAX, * ), C( * ), D( * ), E( * ), E2( * ),
* $ WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DLAEBZ contains the iteration loops which compute and use the
*> function N(w), which is the count of eigenvalues of a symmetric
*> tridiagonal matrix T less than or equal to its argument w. It
*> performs a choice of two types of loops:
*>
*> IJOB=1, followed by
*> IJOB=2: It takes as input a list of intervals and returns a list of
*> sufficiently small intervals whose union contains the same
*> eigenvalues as the union of the original intervals.
*> The input intervals are (AB(j,1),AB(j,2)], j=1,...,MINP.
*> The output interval (AB(j,1),AB(j,2)] will contain
*> eigenvalues NAB(j,1)+1,...,NAB(j,2), where 1 <= j <= MOUT.
*>
*> IJOB=3: It performs a binary search in each input interval
*> (AB(j,1),AB(j,2)] for a point w(j) such that
*> N(w(j))=NVAL(j), and uses C(j) as the starting point of
*> the search. If such a w(j) is found, then on output
*> AB(j,1)=AB(j,2)=w. If no such w(j) is found, then on output
*> (AB(j,1),AB(j,2)] will be a small interval containing the
*> point where N(w) jumps through NVAL(j), unless that point
*> lies outside the initial interval.
*>
*> Note that the intervals are in all cases half-open intervals,
*> i.e., of the form (a,b] , which includes b but not a .
*>
*> To avoid underflow, the matrix should be scaled so that its largest
*> element is no greater than overflow**(1/2) * underflow**(1/4)
*> in absolute value. To assure the most accurate computation
*> of small eigenvalues, the matrix should be scaled to be
*> not much smaller than that, either.
*>
*> See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal
*> Matrix", Report CS41, Computer Science Dept., Stanford
*> University, July 21, 1966
*>
*> Note: the arguments are, in general, *not* checked for unreasonable
*> values.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] IJOB
*> \verbatim
*> IJOB is INTEGER
*> Specifies what is to be done:
*> = 1: Compute NAB for the initial intervals.
*> = 2: Perform bisection iteration to find eigenvalues of T.
*> = 3: Perform bisection iteration to invert N(w), i.e.,
*> to find a point which has a specified number of
*> eigenvalues of T to its left.
*> Other values will cause DLAEBZ to return with INFO=-1.
*> \endverbatim
*>
*> \param[in] NITMAX
*> \verbatim
*> NITMAX is INTEGER
*> The maximum number of "levels" of bisection to be
*> performed, i.e., an interval of width W will not be made
*> smaller than 2^(-NITMAX) * W. If not all intervals
*> have converged after NITMAX iterations, then INFO is set
*> to the number of non-converged intervals.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The dimension n of the tridiagonal matrix T. It must be at
*> least 1.
*> \endverbatim
*>
*> \param[in] MMAX
*> \verbatim
*> MMAX is INTEGER
*> The maximum number of intervals. If more than MMAX intervals
*> are generated, then DLAEBZ will quit with INFO=MMAX+1.
*> \endverbatim
*>
*> \param[in] MINP
*> \verbatim
*> MINP is INTEGER
*> The initial number of intervals. It may not be greater than
*> MMAX.
*> \endverbatim
*>
*> \param[in] NBMIN
*> \verbatim
*> NBMIN is INTEGER
*> The smallest number of intervals that should be processed
*> using a vector loop. If zero, then only the scalar loop
*> will be used.
*> \endverbatim
*>
*> \param[in] ABSTOL
*> \verbatim
*> ABSTOL is DOUBLE PRECISION
*> The minimum (absolute) width of an interval. When an
*> interval is narrower than ABSTOL, or than RELTOL times the
*> larger (in magnitude) endpoint, then it is considered to be
*> sufficiently small, i.e., converged. This must be at least
*> zero.
*> \endverbatim
*>
*> \param[in] RELTOL
*> \verbatim
*> RELTOL is DOUBLE PRECISION
*> The minimum relative width of an interval. When an interval
*> is narrower than ABSTOL, or than RELTOL times the larger (in
*> magnitude) endpoint, then it is considered to be
*> sufficiently small, i.e., converged. Note: this should
*> always be at least radix*machine epsilon.
*> \endverbatim
*>
*> \param[in] PIVMIN
*> \verbatim
*> PIVMIN is DOUBLE PRECISION
*> The minimum absolute value of a "pivot" in the Sturm
*> sequence loop.
*> This must be at least max |e(j)**2|*safe_min and at
*> least safe_min, where safe_min is at least
*> the smallest number that can divide one without overflow.
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*> D is DOUBLE PRECISION array, dimension (N)
*> The diagonal elements of the tridiagonal matrix T.
*> \endverbatim
*>
*> \param[in] E
*> \verbatim
*> E is DOUBLE PRECISION array, dimension (N)
*> The offdiagonal elements of the tridiagonal matrix T in
*> positions 1 through N-1. E(N) is arbitrary.
*> \endverbatim
*>
*> \param[in] E2
*> \verbatim
*> E2 is DOUBLE PRECISION array, dimension (N)
*> The squares of the offdiagonal elements of the tridiagonal
*> matrix T. E2(N) is ignored.
*> \endverbatim
*>
*> \param[in,out] NVAL
*> \verbatim
*> NVAL is INTEGER array, dimension (MINP)
*> If IJOB=1 or 2, not referenced.
*> If IJOB=3, the desired values of N(w). The elements of NVAL
*> will be reordered to correspond with the intervals in AB.
*> Thus, NVAL(j) on output will not, in general be the same as
*> NVAL(j) on input, but it will correspond with the interval
*> (AB(j,1),AB(j,2)] on output.
*> \endverbatim
*>
*> \param[in,out] AB
*> \verbatim
*> AB is DOUBLE PRECISION array, dimension (MMAX,2)
*> The endpoints of the intervals. AB(j,1) is a(j), the left
*> endpoint of the j-th interval, and AB(j,2) is b(j), the
*> right endpoint of the j-th interval. The input intervals
*> will, in general, be modified, split, and reordered by the
*> calculation.
*> \endverbatim
*>
*> \param[in,out] C
*> \verbatim
*> C is DOUBLE PRECISION array, dimension (MMAX)
*> If IJOB=1, ignored.
*> If IJOB=2, workspace.
*> If IJOB=3, then on input C(j) should be initialized to the
*> first search point in the binary search.
*> \endverbatim
*>
*> \param[out] MOUT
*> \verbatim
*> MOUT is INTEGER
*> If IJOB=1, the number of eigenvalues in the intervals.
*> If IJOB=2 or 3, the number of intervals output.
*> If IJOB=3, MOUT will equal MINP.
*> \endverbatim
*>
*> \param[in,out] NAB
*> \verbatim
*> NAB is INTEGER array, dimension (MMAX,2)
*> If IJOB=1, then on output NAB(i,j) will be set to N(AB(i,j)).
*> If IJOB=2, then on input, NAB(i,j) should be set. It must
*> satisfy the condition:
*> N(AB(i,1)) <= NAB(i,1) <= NAB(i,2) <= N(AB(i,2)),
*> which means that in interval i only eigenvalues
*> NAB(i,1)+1,...,NAB(i,2) will be considered. Usually,
*> NAB(i,j)=N(AB(i,j)), from a previous call to DLAEBZ with
*> IJOB=1.
*> On output, NAB(i,j) will contain
*> max(na(k),min(nb(k),N(AB(i,j)))), where k is the index of
*> the input interval that the output interval
*> (AB(j,1),AB(j,2)] came from, and na(k) and nb(k) are the
*> the input values of NAB(k,1) and NAB(k,2).
*> If IJOB=3, then on output, NAB(i,j) contains N(AB(i,j)),
*> unless N(w) > NVAL(i) for all search points w , in which
*> case NAB(i,1) will not be modified, i.e., the output
*> value will be the same as the input value (modulo
*> reorderings -- see NVAL and AB), or unless N(w) < NVAL(i)
*> for all search points w , in which case NAB(i,2) will
*> not be modified. Normally, NAB should be set to some
*> distinctive value(s) before DLAEBZ is called.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension (MMAX)
*> Workspace.
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*> IWORK is INTEGER array, dimension (MMAX)
*> Workspace.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: All intervals converged.
*> = 1--MMAX: The last INFO intervals did not converge.
*> = MMAX+1: More than MMAX intervals were generated.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date September 2012
*
*> \ingroup auxOTHERauxiliary
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> This routine is intended to be called only by other LAPACK
*> routines, thus the interface is less user-friendly. It is intended
*> for two purposes:
*>
*> (a) finding eigenvalues. In this case, DLAEBZ should have one or
*> more initial intervals set up in AB, and DLAEBZ should be called
*> with IJOB=1. This sets up NAB, and also counts the eigenvalues.
*> Intervals with no eigenvalues would usually be thrown out at
*> this point. Also, if not all the eigenvalues in an interval i
*> are desired, NAB(i,1) can be increased or NAB(i,2) decreased.
*> For example, set NAB(i,1)=NAB(i,2)-1 to get the largest
*> eigenvalue. DLAEBZ is then called with IJOB=2 and MMAX
*> no smaller than the value of MOUT returned by the call with
*> IJOB=1. After this (IJOB=2) call, eigenvalues NAB(i,1)+1
*> through NAB(i,2) are approximately AB(i,1) (or AB(i,2)) to the
*> tolerance specified by ABSTOL and RELTOL.
*>
*> (b) finding an interval (a',b'] containing eigenvalues w(f),...,w(l).
*> In this case, start with a Gershgorin interval (a,b). Set up
*> AB to contain 2 search intervals, both initially (a,b). One
*> NVAL element should contain f-1 and the other should contain l
*> , while C should contain a and b, resp. NAB(i,1) should be -1
*> and NAB(i,2) should be N+1, to flag an error if the desired
*> interval does not lie in (a,b). DLAEBZ is then called with
*> IJOB=3. On exit, if w(f-1) < w(f), then one of the intervals --
*> j -- will have AB(j,1)=AB(j,2) and NAB(j,1)=NAB(j,2)=f-1, while
*> if, to the specified tolerance, w(f-k)=...=w(f+r), k > 0 and r
*> >= 0, then the interval will have N(AB(j,1))=NAB(j,1)=f-k and
*> N(AB(j,2))=NAB(j,2)=f+r. The cases w(l) < w(l+1) and
*> w(l-r)=...=w(l+k) are handled similarly.
*> \endverbatim
*>
* =====================================================================
SUBROUTINE DLAEBZ( IJOB, NITMAX, N, MMAX, MINP, NBMIN, ABSTOL,
$ RELTOL, PIVMIN, D, E, E2, NVAL, AB, C, MOUT,
$ NAB, WORK, IWORK, INFO )
*
* -- LAPACK auxiliary routine (version 3.4.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* September 2012
*
* .. Scalar Arguments ..
INTEGER IJOB, INFO, MINP, MMAX, MOUT, N, NBMIN, NITMAX
DOUBLE PRECISION ABSTOL, PIVMIN, RELTOL
* ..
* .. Array Arguments ..
INTEGER IWORK( * ), NAB( MMAX, * ), NVAL( * )
DOUBLE PRECISION AB( MMAX, * ), C( * ), D( * ), E( * ), E2( * ),
$ WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, TWO, HALF
PARAMETER ( ZERO = 0.0D0, TWO = 2.0D0,
$ HALF = 1.0D0 / TWO )
* ..
* .. Local Scalars ..
INTEGER ITMP1, ITMP2, J, JI, JIT, JP, KF, KFNEW, KL,
$ KLNEW
DOUBLE PRECISION TMP1, TMP2
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN
* ..
* .. Executable Statements ..
*
* Check for Errors
*
INFO = 0
IF( IJOB.LT.1 .OR. IJOB.GT.3 ) THEN
INFO = -1
RETURN
END IF
*
* Initialize NAB
*
IF( IJOB.EQ.1 ) THEN
*
* Compute the number of eigenvalues in the initial intervals.
*
MOUT = 0
DO 30 JI = 1, MINP
DO 20 JP = 1, 2
TMP1 = D( 1 ) - AB( JI, JP )
IF( ABS( TMP1 ).LT.PIVMIN )
$ TMP1 = -PIVMIN
NAB( JI, JP ) = 0
IF( TMP1.LE.ZERO )
$ NAB( JI, JP ) = 1
*
DO 10 J = 2, N
TMP1 = D( J ) - E2( J-1 ) / TMP1 - AB( JI, JP )
IF( ABS( TMP1 ).LT.PIVMIN )
$ TMP1 = -PIVMIN
IF( TMP1.LE.ZERO )
$ NAB( JI, JP ) = NAB( JI, JP ) + 1
10 CONTINUE
20 CONTINUE
MOUT = MOUT + NAB( JI, 2 ) - NAB( JI, 1 )
30 CONTINUE
RETURN
END IF
*
* Initialize for loop
*
* KF and KL have the following meaning:
* Intervals 1,...,KF-1 have converged.
* Intervals KF,...,KL still need to be refined.
*
KF = 1
KL = MINP
*
* If IJOB=2, initialize C.
* If IJOB=3, use the user-supplied starting point.
*
IF( IJOB.EQ.2 ) THEN
DO 40 JI = 1, MINP
C( JI ) = HALF*( AB( JI, 1 )+AB( JI, 2 ) )
40 CONTINUE
END IF
*
* Iteration loop
*
DO 130 JIT = 1, NITMAX
*
* Loop over intervals
*
IF( KL-KF+1.GE.NBMIN .AND. NBMIN.GT.0 ) THEN
*
* Begin of Parallel Version of the loop
*
DO 60 JI = KF, KL
*
* Compute N(c), the number of eigenvalues less than c
*
WORK( JI ) = D( 1 ) - C( JI )
IWORK( JI ) = 0
IF( WORK( JI ).LE.PIVMIN ) THEN
IWORK( JI ) = 1
WORK( JI ) = MIN( WORK( JI ), -PIVMIN )
END IF
*
DO 50 J = 2, N
WORK( JI ) = D( J ) - E2( J-1 ) / WORK( JI ) - C( JI )
IF( WORK( JI ).LE.PIVMIN ) THEN
IWORK( JI ) = IWORK( JI ) + 1
WORK( JI ) = MIN( WORK( JI ), -PIVMIN )
END IF
50 CONTINUE
60 CONTINUE
*
IF( IJOB.LE.2 ) THEN
*
* IJOB=2: Choose all intervals containing eigenvalues.
*
KLNEW = KL
DO 70 JI = KF, KL
*
* Insure that N(w) is monotone
*
IWORK( JI ) = MIN( NAB( JI, 2 ),
$ MAX( NAB( JI, 1 ), IWORK( JI ) ) )
*
* Update the Queue -- add intervals if both halves
* contain eigenvalues.
*
IF( IWORK( JI ).EQ.NAB( JI, 2 ) ) THEN
*
* No eigenvalue in the upper interval:
* just use the lower interval.
*
AB( JI, 2 ) = C( JI )
*
ELSE IF( IWORK( JI ).EQ.NAB( JI, 1 ) ) THEN
*
* No eigenvalue in the lower interval:
* just use the upper interval.
*
AB( JI, 1 ) = C( JI )
ELSE
KLNEW = KLNEW + 1
IF( KLNEW.LE.MMAX ) THEN
*
* Eigenvalue in both intervals -- add upper to
* queue.
*
AB( KLNEW, 2 ) = AB( JI, 2 )
NAB( KLNEW, 2 ) = NAB( JI, 2 )
AB( KLNEW, 1 ) = C( JI )
NAB( KLNEW, 1 ) = IWORK( JI )
AB( JI, 2 ) = C( JI )
NAB( JI, 2 ) = IWORK( JI )
ELSE
INFO = MMAX + 1
END IF
END IF
70 CONTINUE
IF( INFO.NE.0 )
$ RETURN
KL = KLNEW
ELSE
*
* IJOB=3: Binary search. Keep only the interval containing
* w s.t. N(w) = NVAL
*
DO 80 JI = KF, KL
IF( IWORK( JI ).LE.NVAL( JI ) ) THEN
AB( JI, 1 ) = C( JI )
NAB( JI, 1 ) = IWORK( JI )
END IF
IF( IWORK( JI ).GE.NVAL( JI ) ) THEN
AB( JI, 2 ) = C( JI )
NAB( JI, 2 ) = IWORK( JI )
END IF
80 CONTINUE
END IF
*
ELSE
*
* End of Parallel Version of the loop
*
* Begin of Serial Version of the loop
*
KLNEW = KL
DO 100 JI = KF, KL
*
* Compute N(w), the number of eigenvalues less than w
*
TMP1 = C( JI )
TMP2 = D( 1 ) - TMP1
ITMP1 = 0
IF( TMP2.LE.PIVMIN ) THEN
ITMP1 = 1
TMP2 = MIN( TMP2, -PIVMIN )
END IF
*
DO 90 J = 2, N
TMP2 = D( J ) - E2( J-1 ) / TMP2 - TMP1
IF( TMP2.LE.PIVMIN ) THEN
ITMP1 = ITMP1 + 1
TMP2 = MIN( TMP2, -PIVMIN )
END IF
90 CONTINUE
*
IF( IJOB.LE.2 ) THEN
*
* IJOB=2: Choose all intervals containing eigenvalues.
*
* Insure that N(w) is monotone
*
ITMP1 = MIN( NAB( JI, 2 ),
$ MAX( NAB( JI, 1 ), ITMP1 ) )
*
* Update the Queue -- add intervals if both halves
* contain eigenvalues.
*
IF( ITMP1.EQ.NAB( JI, 2 ) ) THEN
*
* No eigenvalue in the upper interval:
* just use the lower interval.
*
AB( JI, 2 ) = TMP1
*
ELSE IF( ITMP1.EQ.NAB( JI, 1 ) ) THEN
*
* No eigenvalue in the lower interval:
* just use the upper interval.
*
AB( JI, 1 ) = TMP1
ELSE IF( KLNEW.LT.MMAX ) THEN
*
* Eigenvalue in both intervals -- add upper to queue.
*
KLNEW = KLNEW + 1
AB( KLNEW, 2 ) = AB( JI, 2 )
NAB( KLNEW, 2 ) = NAB( JI, 2 )
AB( KLNEW, 1 ) = TMP1
NAB( KLNEW, 1 ) = ITMP1
AB( JI, 2 ) = TMP1
NAB( JI, 2 ) = ITMP1
ELSE
INFO = MMAX + 1
RETURN
END IF
ELSE
*
* IJOB=3: Binary search. Keep only the interval
* containing w s.t. N(w) = NVAL
*
IF( ITMP1.LE.NVAL( JI ) ) THEN
AB( JI, 1 ) = TMP1
NAB( JI, 1 ) = ITMP1
END IF
IF( ITMP1.GE.NVAL( JI ) ) THEN
AB( JI, 2 ) = TMP1
NAB( JI, 2 ) = ITMP1
END IF
END IF
100 CONTINUE
KL = KLNEW
*
END IF
*
* Check for convergence
*
KFNEW = KF
DO 110 JI = KF, KL
TMP1 = ABS( AB( JI, 2 )-AB( JI, 1 ) )
TMP2 = MAX( ABS( AB( JI, 2 ) ), ABS( AB( JI, 1 ) ) )
IF( TMP1.LT.MAX( ABSTOL, PIVMIN, RELTOL*TMP2 ) .OR.
$ NAB( JI, 1 ).GE.NAB( JI, 2 ) ) THEN
*
* Converged -- Swap with position KFNEW,
* then increment KFNEW
*
IF( JI.GT.KFNEW ) THEN
TMP1 = AB( JI, 1 )
TMP2 = AB( JI, 2 )
ITMP1 = NAB( JI, 1 )
ITMP2 = NAB( JI, 2 )
AB( JI, 1 ) = AB( KFNEW, 1 )
AB( JI, 2 ) = AB( KFNEW, 2 )
NAB( JI, 1 ) = NAB( KFNEW, 1 )
NAB( JI, 2 ) = NAB( KFNEW, 2 )
AB( KFNEW, 1 ) = TMP1
AB( KFNEW, 2 ) = TMP2
NAB( KFNEW, 1 ) = ITMP1
NAB( KFNEW, 2 ) = ITMP2
IF( IJOB.EQ.3 ) THEN
ITMP1 = NVAL( JI )
NVAL( JI ) = NVAL( KFNEW )
NVAL( KFNEW ) = ITMP1
END IF
END IF
KFNEW = KFNEW + 1
END IF
110 CONTINUE
KF = KFNEW
*
* Choose Midpoints
*
DO 120 JI = KF, KL
C( JI ) = HALF*( AB( JI, 1 )+AB( JI, 2 ) )
120 CONTINUE
*
* If no more intervals to refine, quit.
*
IF( KF.GT.KL )
$ GO TO 140
130 CONTINUE
*
* Converged
*
140 CONTINUE
INFO = MAX( KL+1-KF, 0 )
MOUT = KL
*
RETURN
*
* End of DLAEBZ
*
END