*> \brief \b SORGHR
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SORGHR + dependencies
*>
*> [TGZ]
*>
*> [ZIP]
*>
*> [TXT]
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE SORGHR( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO )
*
* .. Scalar Arguments ..
* INTEGER IHI, ILO, INFO, LDA, LWORK, N
* ..
* .. Array Arguments ..
* REAL A( LDA, * ), TAU( * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SORGHR generates a real orthogonal matrix Q which is defined as the
*> product of IHI-ILO elementary reflectors of order N, as returned by
*> SGEHRD:
*>
*> Q = H(ilo) H(ilo+1) . . . H(ihi-1).
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix Q. N >= 0.
*> \endverbatim
*>
*> \param[in] ILO
*> \verbatim
*> ILO is INTEGER
*> \endverbatim
*>
*> \param[in] IHI
*> \verbatim
*> IHI is INTEGER
*>
*> ILO and IHI must have the same values as in the previous call
*> of SGEHRD. Q is equal to the unit matrix except in the
*> submatrix Q(ilo+1:ihi,ilo+1:ihi).
*> 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is REAL array, dimension (LDA,N)
*> On entry, the vectors which define the elementary reflectors,
*> as returned by SGEHRD.
*> On exit, the N-by-N orthogonal matrix Q.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[in] TAU
*> \verbatim
*> TAU is REAL array, dimension (N-1)
*> TAU(i) must contain the scalar factor of the elementary
*> reflector H(i), as returned by SGEHRD.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is REAL array, dimension (MAX(1,LWORK))
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= IHI-ILO.
*> For optimum performance LWORK >= (IHI-ILO)*NB, where NB is
*> the optimal blocksize.
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
*> message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup realOTHERcomputational
*
* =====================================================================
SUBROUTINE SORGHR( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO )
*
* -- LAPACK computational routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER IHI, ILO, INFO, LDA, LWORK, N
* ..
* .. Array Arguments ..
REAL A( LDA, * ), TAU( * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
* ..
* .. Local Scalars ..
LOGICAL LQUERY
INTEGER I, IINFO, J, LWKOPT, NB, NH
* ..
* .. External Subroutines ..
EXTERNAL SORGQR, XERBLA
* ..
* .. External Functions ..
INTEGER ILAENV
EXTERNAL ILAENV
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. Executable Statements ..
*
* Test the input arguments
*
INFO = 0
NH = IHI - ILO
LQUERY = ( LWORK.EQ.-1 )
IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN
INFO = -2
ELSE IF( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -5
ELSE IF( LWORK.LT.MAX( 1, NH ) .AND. .NOT.LQUERY ) THEN
INFO = -8
END IF
*
IF( INFO.EQ.0 ) THEN
NB = ILAENV( 1, 'SORGQR', ' ', NH, NH, NH, -1 )
LWKOPT = MAX( 1, NH )*NB
WORK( 1 ) = LWKOPT
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SORGHR', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 ) THEN
WORK( 1 ) = 1
RETURN
END IF
*
* Shift the vectors which define the elementary reflectors one
* column to the right, and set the first ilo and the last n-ihi
* rows and columns to those of the unit matrix
*
DO 40 J = IHI, ILO + 1, -1
DO 10 I = 1, J - 1
A( I, J ) = ZERO
10 CONTINUE
DO 20 I = J + 1, IHI
A( I, J ) = A( I, J-1 )
20 CONTINUE
DO 30 I = IHI + 1, N
A( I, J ) = ZERO
30 CONTINUE
40 CONTINUE
DO 60 J = 1, ILO
DO 50 I = 1, N
A( I, J ) = ZERO
50 CONTINUE
A( J, J ) = ONE
60 CONTINUE
DO 80 J = IHI + 1, N
DO 70 I = 1, N
A( I, J ) = ZERO
70 CONTINUE
A( J, J ) = ONE
80 CONTINUE
*
IF( NH.GT.0 ) THEN
*
* Generate Q(ilo+1:ihi,ilo+1:ihi)
*
CALL SORGQR( NH, NH, NH, A( ILO+1, ILO+1 ), LDA, TAU( ILO ),
$ WORK, LWORK, IINFO )
END IF
WORK( 1 ) = LWKOPT
RETURN
*
* End of SORGHR
*
END