*> \brief \b ZLARFGP generates an elementary reflector (Householder matrix) with non-negative beta.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZLARFGP + dependencies
*>
*> [TGZ]
*>
*> [ZIP]
*>
*> [TXT]
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE ZLARFGP( N, ALPHA, X, INCX, TAU )
*
* .. Scalar Arguments ..
* INTEGER INCX, N
* COMPLEX*16 ALPHA, TAU
* ..
* .. Array Arguments ..
* COMPLEX*16 X( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZLARFGP generates a complex elementary reflector H of order n, such
*> that
*>
*> H**H * ( alpha ) = ( beta ), H**H * H = I.
*> ( x ) ( 0 )
*>
*> where alpha and beta are scalars, beta is real and non-negative, and
*> x is an (n-1)-element complex vector. H is represented in the form
*>
*> H = I - tau * ( 1 ) * ( 1 v**H ) ,
*> ( v )
*>
*> where tau is a complex scalar and v is a complex (n-1)-element
*> vector. Note that H is not hermitian.
*>
*> If the elements of x are all zero and alpha is real, then tau = 0
*> and H is taken to be the unit matrix.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the elementary reflector.
*> \endverbatim
*>
*> \param[in,out] ALPHA
*> \verbatim
*> ALPHA is COMPLEX*16
*> On entry, the value alpha.
*> On exit, it is overwritten with the value beta.
*> \endverbatim
*>
*> \param[in,out] X
*> \verbatim
*> X is COMPLEX*16 array, dimension
*> (1+(N-2)*abs(INCX))
*> On entry, the vector x.
*> On exit, it is overwritten with the vector v.
*> \endverbatim
*>
*> \param[in] INCX
*> \verbatim
*> INCX is INTEGER
*> The increment between elements of X. INCX > 0.
*> \endverbatim
*>
*> \param[out] TAU
*> \verbatim
*> TAU is COMPLEX*16
*> The value tau.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2015
*
*> \ingroup complex16OTHERauxiliary
*
* =====================================================================
SUBROUTINE ZLARFGP( N, ALPHA, X, INCX, TAU )
*
* -- LAPACK auxiliary routine (version 3.6.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2015
*
* .. Scalar Arguments ..
INTEGER INCX, N
COMPLEX*16 ALPHA, TAU
* ..
* .. Array Arguments ..
COMPLEX*16 X( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION TWO, ONE, ZERO
PARAMETER ( TWO = 2.0D+0, ONE = 1.0D+0, ZERO = 0.0D+0 )
* ..
* .. Local Scalars ..
INTEGER J, KNT
DOUBLE PRECISION ALPHI, ALPHR, BETA, BIGNUM, SMLNUM, XNORM
COMPLEX*16 SAVEALPHA
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH, DLAPY3, DLAPY2, DZNRM2
COMPLEX*16 ZLADIV
EXTERNAL DLAMCH, DLAPY3, DLAPY2, DZNRM2, ZLADIV
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, DCMPLX, DIMAG, SIGN
* ..
* .. External Subroutines ..
EXTERNAL ZDSCAL, ZSCAL
* ..
* .. Executable Statements ..
*
IF( N.LE.0 ) THEN
TAU = ZERO
RETURN
END IF
*
XNORM = DZNRM2( N-1, X, INCX )
ALPHR = DBLE( ALPHA )
ALPHI = DIMAG( ALPHA )
*
IF( XNORM.EQ.ZERO ) THEN
*
* H = [1-alpha/abs(alpha) 0; 0 I], sign chosen so ALPHA >= 0.
*
IF( ALPHI.EQ.ZERO ) THEN
IF( ALPHR.GE.ZERO ) THEN
* When TAU.eq.ZERO, the vector is special-cased to be
* all zeros in the application routines. We do not need
* to clear it.
TAU = ZERO
ELSE
* However, the application routines rely on explicit
* zero checks when TAU.ne.ZERO, and we must clear X.
TAU = TWO
DO J = 1, N-1
X( 1 + (J-1)*INCX ) = ZERO
END DO
ALPHA = -ALPHA
END IF
ELSE
* Only "reflecting" the diagonal entry to be real and non-negative.
XNORM = DLAPY2( ALPHR, ALPHI )
TAU = DCMPLX( ONE - ALPHR / XNORM, -ALPHI / XNORM )
DO J = 1, N-1
X( 1 + (J-1)*INCX ) = ZERO
END DO
ALPHA = XNORM
END IF
ELSE
*
* general case
*
BETA = SIGN( DLAPY3( ALPHR, ALPHI, XNORM ), ALPHR )
SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'E' )
BIGNUM = ONE / SMLNUM
*
KNT = 0
IF( ABS( BETA ).LT.SMLNUM ) THEN
*
* XNORM, BETA may be inaccurate; scale X and recompute them
*
10 CONTINUE
KNT = KNT + 1
CALL ZDSCAL( N-1, BIGNUM, X, INCX )
BETA = BETA*BIGNUM
ALPHI = ALPHI*BIGNUM
ALPHR = ALPHR*BIGNUM
IF( ABS( BETA ).LT.SMLNUM )
$ GO TO 10
*
* New BETA is at most 1, at least SMLNUM
*
XNORM = DZNRM2( N-1, X, INCX )
ALPHA = DCMPLX( ALPHR, ALPHI )
BETA = SIGN( DLAPY3( ALPHR, ALPHI, XNORM ), ALPHR )
END IF
SAVEALPHA = ALPHA
ALPHA = ALPHA + BETA
IF( BETA.LT.ZERO ) THEN
BETA = -BETA
TAU = -ALPHA / BETA
ELSE
ALPHR = ALPHI * (ALPHI/DBLE( ALPHA ))
ALPHR = ALPHR + XNORM * (XNORM/DBLE( ALPHA ))
TAU = DCMPLX( ALPHR/BETA, -ALPHI/BETA )
ALPHA = DCMPLX( -ALPHR, ALPHI )
END IF
ALPHA = ZLADIV( DCMPLX( ONE ), ALPHA )
*
IF ( ABS(TAU).LE.SMLNUM ) THEN
*
* In the case where the computed TAU ends up being a denormalized number,
* it loses relative accuracy. This is a BIG problem. Solution: flush TAU
* to ZERO (or TWO or whatever makes a nonnegative real number for BETA).
*
* (Bug report provided by Pat Quillen from MathWorks on Jul 29, 2009.)
* (Thanks Pat. Thanks MathWorks.)
*
ALPHR = DBLE( SAVEALPHA )
ALPHI = DIMAG( SAVEALPHA )
IF( ALPHI.EQ.ZERO ) THEN
IF( ALPHR.GE.ZERO ) THEN
TAU = ZERO
ELSE
TAU = TWO
DO J = 1, N-1
X( 1 + (J-1)*INCX ) = ZERO
END DO
BETA = -SAVEALPHA
END IF
ELSE
XNORM = DLAPY2( ALPHR, ALPHI )
TAU = DCMPLX( ONE - ALPHR / XNORM, -ALPHI / XNORM )
DO J = 1, N-1
X( 1 + (J-1)*INCX ) = ZERO
END DO
BETA = XNORM
END IF
*
ELSE
*
* This is the general case.
*
CALL ZSCAL( N-1, ALPHA, X, INCX )
*
END IF
*
* If BETA is subnormal, it may lose relative accuracy
*
DO 20 J = 1, KNT
BETA = BETA*SMLNUM
20 CONTINUE
ALPHA = BETA
END IF
*
RETURN
*
* End of ZLARFGP
*
END