*> \brief \b SLAHRD reduces the first nb columns of a general rectangular matrix A so that elements below the k-th subdiagonal are zero, and returns auxiliary matrices which are needed to apply the transformation to the unreduced part of A.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SLAHRD + dependencies
*>
*> [TGZ]
*>
*> [ZIP]
*>
*> [TXT]
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE SLAHRD( N, K, NB, A, LDA, TAU, T, LDT, Y, LDY )
*
* .. Scalar Arguments ..
* INTEGER K, LDA, LDT, LDY, N, NB
* ..
* .. Array Arguments ..
* REAL A( LDA, * ), T( LDT, NB ), TAU( NB ),
* $ Y( LDY, NB )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> This routine is deprecated and has been replaced by routine SLAHR2.
*>
*> SLAHRD reduces the first NB columns of a real general n-by-(n-k+1)
*> matrix A so that elements below the k-th subdiagonal are zero. The
*> reduction is performed by an orthogonal similarity transformation
*> Q**T * A * Q. The routine returns the matrices V and T which determine
*> Q as a block reflector I - V*T*V**T, and also the matrix Y = A * V * T.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A.
*> \endverbatim
*>
*> \param[in] K
*> \verbatim
*> K is INTEGER
*> The offset for the reduction. Elements below the k-th
*> subdiagonal in the first NB columns are reduced to zero.
*> \endverbatim
*>
*> \param[in] NB
*> \verbatim
*> NB is INTEGER
*> The number of columns to be reduced.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is REAL array, dimension (LDA,N-K+1)
*> On entry, the n-by-(n-k+1) general matrix A.
*> On exit, the elements on and above the k-th subdiagonal in
*> the first NB columns are overwritten with the corresponding
*> elements of the reduced matrix; the elements below the k-th
*> subdiagonal, with the array TAU, represent the matrix Q as a
*> product of elementary reflectors. The other columns of A are
*> unchanged. See Further Details.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[out] TAU
*> \verbatim
*> TAU is REAL array, dimension (NB)
*> The scalar factors of the elementary reflectors. See Further
*> Details.
*> \endverbatim
*>
*> \param[out] T
*> \verbatim
*> T is REAL array, dimension (LDT,NB)
*> The upper triangular matrix T.
*> \endverbatim
*>
*> \param[in] LDT
*> \verbatim
*> LDT is INTEGER
*> The leading dimension of the array T. LDT >= NB.
*> \endverbatim
*>
*> \param[out] Y
*> \verbatim
*> Y is REAL array, dimension (LDY,NB)
*> The n-by-nb matrix Y.
*> \endverbatim
*>
*> \param[in] LDY
*> \verbatim
*> LDY is INTEGER
*> The leading dimension of the array Y. LDY >= N.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup realOTHERauxiliary
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> The matrix Q is represented as a product of nb elementary reflectors
*>
*> Q = H(1) H(2) . . . H(nb).
*>
*> Each H(i) has the form
*>
*> H(i) = I - tau * v * v**T
*>
*> where tau is a real scalar, and v is a real vector with
*> v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in
*> A(i+k+1:n,i), and tau in TAU(i).
*>
*> The elements of the vectors v together form the (n-k+1)-by-nb matrix
*> V which is needed, with T and Y, to apply the transformation to the
*> unreduced part of the matrix, using an update of the form:
*> A := (I - V*T*V**T) * (A - Y*V**T).
*>
*> The contents of A on exit are illustrated by the following example
*> with n = 7, k = 3 and nb = 2:
*>
*> ( a h a a a )
*> ( a h a a a )
*> ( a h a a a )
*> ( h h a a a )
*> ( v1 h a a a )
*> ( v1 v2 a a a )
*> ( v1 v2 a a a )
*>
*> where a denotes an element of the original matrix A, h denotes a
*> modified element of the upper Hessenberg matrix H, and vi denotes an
*> element of the vector defining H(i).
*> \endverbatim
*>
* =====================================================================
SUBROUTINE SLAHRD( N, K, NB, A, LDA, TAU, T, LDT, Y, LDY )
*
* -- LAPACK auxiliary routine (version 3.7.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
* .. Scalar Arguments ..
INTEGER K, LDA, LDT, LDY, N, NB
* ..
* .. Array Arguments ..
REAL A( LDA, * ), T( LDT, NB ), TAU( NB ),
$ Y( LDY, NB )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
* ..
* .. Local Scalars ..
INTEGER I
REAL EI
* ..
* .. External Subroutines ..
EXTERNAL SAXPY, SCOPY, SGEMV, SLARFG, SSCAL, STRMV
* ..
* .. Intrinsic Functions ..
INTRINSIC MIN
* ..
* .. Executable Statements ..
*
* Quick return if possible
*
IF( N.LE.1 )
$ RETURN
*
DO 10 I = 1, NB
IF( I.GT.1 ) THEN
*
* Update A(1:n,i)
*
* Compute i-th column of A - Y * V**T
*
CALL SGEMV( 'No transpose', N, I-1, -ONE, Y, LDY,
$ A( K+I-1, 1 ), LDA, ONE, A( 1, I ), 1 )
*
* Apply I - V * T**T * V**T to this column (call it b) from the
* left, using the last column of T as workspace
*
* Let V = ( V1 ) and b = ( b1 ) (first I-1 rows)
* ( V2 ) ( b2 )
*
* where V1 is unit lower triangular
*
* w := V1**T * b1
*
CALL SCOPY( I-1, A( K+1, I ), 1, T( 1, NB ), 1 )
CALL STRMV( 'Lower', 'Transpose', 'Unit', I-1, A( K+1, 1 ),
$ LDA, T( 1, NB ), 1 )
*
* w := w + V2**T *b2
*
CALL SGEMV( 'Transpose', N-K-I+1, I-1, ONE, A( K+I, 1 ),
$ LDA, A( K+I, I ), 1, ONE, T( 1, NB ), 1 )
*
* w := T**T *w
*
CALL STRMV( 'Upper', 'Transpose', 'Non-unit', I-1, T, LDT,
$ T( 1, NB ), 1 )
*
* b2 := b2 - V2*w
*
CALL SGEMV( 'No transpose', N-K-I+1, I-1, -ONE, A( K+I, 1 ),
$ LDA, T( 1, NB ), 1, ONE, A( K+I, I ), 1 )
*
* b1 := b1 - V1*w
*
CALL STRMV( 'Lower', 'No transpose', 'Unit', I-1,
$ A( K+1, 1 ), LDA, T( 1, NB ), 1 )
CALL SAXPY( I-1, -ONE, T( 1, NB ), 1, A( K+1, I ), 1 )
*
A( K+I-1, I-1 ) = EI
END IF
*
* Generate the elementary reflector H(i) to annihilate
* A(k+i+1:n,i)
*
CALL SLARFG( N-K-I+1, A( K+I, I ), A( MIN( K+I+1, N ), I ), 1,
$ TAU( I ) )
EI = A( K+I, I )
A( K+I, I ) = ONE
*
* Compute Y(1:n,i)
*
CALL SGEMV( 'No transpose', N, N-K-I+1, ONE, A( 1, I+1 ), LDA,
$ A( K+I, I ), 1, ZERO, Y( 1, I ), 1 )
CALL SGEMV( 'Transpose', N-K-I+1, I-1, ONE, A( K+I, 1 ), LDA,
$ A( K+I, I ), 1, ZERO, T( 1, I ), 1 )
CALL SGEMV( 'No transpose', N, I-1, -ONE, Y, LDY, T( 1, I ), 1,
$ ONE, Y( 1, I ), 1 )
CALL SSCAL( N, TAU( I ), Y( 1, I ), 1 )
*
* Compute T(1:i,i)
*
CALL SSCAL( I-1, -TAU( I ), T( 1, I ), 1 )
CALL STRMV( 'Upper', 'No transpose', 'Non-unit', I-1, T, LDT,
$ T( 1, I ), 1 )
T( I, I ) = TAU( I )
*
10 CONTINUE
A( K+NB, NB ) = EI
*
RETURN
*
* End of SLAHRD
*
END