*> \brief \b CHETRF_AA
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CHETRF_AA + dependencies
*>
*> [TGZ]
*>
*> [ZIP]
*>
*> [TXT]
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE CHETRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
*
* .. Scalar Arguments ..
* CHARACTER UPLO
* INTEGER N, LDA, LWORK, INFO
* ..
* .. Array Arguments ..
* INTEGER IPIV( * )
* COMPLEX A( LDA, * ), WORK( * )
* ..
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CHETRF_AA computes the factorization of a complex hermitian matrix A
*> using the Aasen's algorithm. The form of the factorization is
*>
*> A = U**H*T*U or A = L*T*L**H
*>
*> where U (or L) is a product of permutation and unit upper (lower)
*> triangular matrices, and T is a hermitian tridiagonal matrix.
*>
*> This is the blocked version of the algorithm, calling Level 3 BLAS.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> = 'U': Upper triangle of A is stored;
*> = 'L': Lower triangle of A is stored.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is COMPLEX array, dimension (LDA,N)
*> On entry, the hermitian matrix A. If UPLO = 'U', the leading
*> N-by-N upper triangular part of A contains the upper
*> triangular part of the matrix A, and the strictly lower
*> triangular part of A is not referenced. If UPLO = 'L', the
*> leading N-by-N lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
*>
*> On exit, the tridiagonal matrix is stored in the diagonals
*> and the subdiagonals of A just below (or above) the diagonals,
*> and L is stored below (or above) the subdiaonals, when UPLO
*> is 'L' (or 'U').
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[out] IPIV
*> \verbatim
*> IPIV is INTEGER array, dimension (N)
*> On exit, it contains the details of the interchanges, i.e.,
*> the row and column k of A were interchanged with the
*> row and column IPIV(k).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (MAX(1,LWORK))
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The length of WORK. LWORK >= 2*N. For optimum performance
*> LWORK >= N*(1+NB), where NB is the optimal blocksize.
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
*> message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2017
*
*> \ingroup complexHEcomputational
*
* =====================================================================
SUBROUTINE CHETRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
*
* -- LAPACK computational routine (version 3.8.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2017
*
IMPLICIT NONE
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER N, LDA, LWORK, INFO
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
COMPLEX A( LDA, * ), WORK( * )
* ..
*
* =====================================================================
* .. Parameters ..
COMPLEX ZERO, ONE
PARAMETER ( ZERO = (0.0E+0, 0.0E+0), ONE = (1.0E+0, 0.0E+0) )
*
* .. Local Scalars ..
LOGICAL LQUERY, UPPER
INTEGER J, LWKOPT
INTEGER NB, MJ, NJ, K1, K2, J1, J2, J3, JB
COMPLEX ALPHA
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ILAENV
EXTERNAL LSAME, ILAENV
* ..
* .. External Subroutines ..
EXTERNAL CLAHEF_AA, CGEMM, CCOPY, CSWAP, CSCAL, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC REAL, CONJG, MAX
* ..
* .. Executable Statements ..
*
* Determine the block size
*
NB = ILAENV( 1, 'CHETRF_AA', UPLO, N, -1, -1, -1 )
*
* Test the input parameters.
*
INFO = 0
UPPER = LSAME( UPLO, 'U' )
LQUERY = ( LWORK.EQ.-1 )
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -4
ELSE IF( LWORK.LT.( 2*N ) .AND. .NOT.LQUERY ) THEN
INFO = -7
END IF
*
IF( INFO.EQ.0 ) THEN
LWKOPT = (NB+1)*N
WORK( 1 ) = LWKOPT
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CHETRF_AA', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return
*
IF ( N.EQ.0 ) THEN
RETURN
ENDIF
IPIV( 1 ) = 1
IF ( N.EQ.1 ) THEN
A( 1, 1 ) = REAL( A( 1, 1 ) )
RETURN
END IF
*
* Adjust block size based on the workspace size
*
IF( LWORK.LT.((1+NB)*N) ) THEN
NB = ( LWORK-N ) / N
END IF
*
IF( UPPER ) THEN
*
* .....................................................
* Factorize A as U**H*D*U using the upper triangle of A
* .....................................................
*
* copy first row A(1, 1:N) into H(1:n) (stored in WORK(1:N))
*
CALL CCOPY( N, A( 1, 1 ), LDA, WORK( 1 ), 1 )
*
* J is the main loop index, increasing from 1 to N in steps of
* JB, where JB is the number of columns factorized by CLAHEF;
* JB is either NB, or N-J+1 for the last block
*
J = 0
10 CONTINUE
IF( J.GE.N )
$ GO TO 20
*
* each step of the main loop
* J is the last column of the previous panel
* J1 is the first column of the current panel
* K1 identifies if the previous column of the panel has been
* explicitly stored, e.g., K1=1 for the first panel, and
* K1=0 for the rest
*
J1 = J + 1
JB = MIN( N-J1+1, NB )
K1 = MAX(1, J)-J
*
* Panel factorization
*
CALL CLAHEF_AA( UPLO, 2-K1, N-J, JB,
$ A( MAX(1, J), J+1 ), LDA,
$ IPIV( J+1 ), WORK, N, WORK( N*NB+1 ) )
*
* Adjust IPIV and apply it back (J-th step picks (J+1)-th pivot)
*
DO J2 = J+2, MIN(N, J+JB+1)
IPIV( J2 ) = IPIV( J2 ) + J
IF( (J2.NE.IPIV(J2)) .AND. ((J1-K1).GT.2) ) THEN
CALL CSWAP( J1-K1-2, A( 1, J2 ), 1,
$ A( 1, IPIV(J2) ), 1 )
END IF
END DO
J = J + JB
*
* Trailing submatrix update, where
* the row A(J1-1, J2-1:N) stores U(J1, J2+1:N) and
* WORK stores the current block of the auxiriarly matrix H
*
IF( J.LT.N ) THEN
*
* if the first panel and JB=1 (NB=1), then nothing to do
*
IF( J1.GT.1 .OR. JB.GT.1 ) THEN
*
* Merge rank-1 update with BLAS-3 update
*
ALPHA = CONJG( A( J, J+1 ) )
A( J, J+1 ) = ONE
CALL CCOPY( N-J, A( J-1, J+1 ), LDA,
$ WORK( (J+1-J1+1)+JB*N ), 1 )
CALL CSCAL( N-J, ALPHA, WORK( (J+1-J1+1)+JB*N ), 1 )
*
* K1 identifies if the previous column of the panel has been
* explicitly stored, e.g., K1=0 and K2=1 for the first panel,
* and K1=1 and K2=0 for the rest
*
IF( J1.GT.1 ) THEN
*
* Not first panel
*
K2 = 1
ELSE
*
* First panel
*
K2 = 0
*
* First update skips the first column
*
JB = JB - 1
END IF
*
DO J2 = J+1, N, NB
NJ = MIN( NB, N-J2+1 )
*
* Update (J2, J2) diagonal block with CGEMV
*
J3 = J2
DO MJ = NJ-1, 1, -1
CALL CGEMM( 'Conjugate transpose', 'Transpose',
$ 1, MJ, JB+1,
$ -ONE, A( J1-K2, J3 ), LDA,
$ WORK( (J3-J1+1)+K1*N ), N,
$ ONE, A( J3, J3 ), LDA )
J3 = J3 + 1
END DO
*
* Update off-diagonal block of J2-th block row with CGEMM
*
CALL CGEMM( 'Conjugate transpose', 'Transpose',
$ NJ, N-J3+1, JB+1,
$ -ONE, A( J1-K2, J2 ), LDA,
$ WORK( (J3-J1+1)+K1*N ), N,
$ ONE, A( J2, J3 ), LDA )
END DO
*
* Recover T( J, J+1 )
*
A( J, J+1 ) = CONJG( ALPHA )
END IF
*
* WORK(J+1, 1) stores H(J+1, 1)
*
CALL CCOPY( N-J, A( J+1, J+1 ), LDA, WORK( 1 ), 1 )
END IF
GO TO 10
ELSE
*
* .....................................................
* Factorize A as L*D*L**H using the lower triangle of A
* .....................................................
*
* copy first column A(1:N, 1) into H(1:N, 1)
* (stored in WORK(1:N))
*
CALL CCOPY( N, A( 1, 1 ), 1, WORK( 1 ), 1 )
*
* J is the main loop index, increasing from 1 to N in steps of
* JB, where JB is the number of columns factorized by CLAHEF;
* JB is either NB, or N-J+1 for the last block
*
J = 0
11 CONTINUE
IF( J.GE.N )
$ GO TO 20
*
* each step of the main loop
* J is the last column of the previous panel
* J1 is the first column of the current panel
* K1 identifies if the previous column of the panel has been
* explicitly stored, e.g., K1=1 for the first panel, and
* K1=0 for the rest
*
J1 = J+1
JB = MIN( N-J1+1, NB )
K1 = MAX(1, J)-J
*
* Panel factorization
*
CALL CLAHEF_AA( UPLO, 2-K1, N-J, JB,
$ A( J+1, MAX(1, J) ), LDA,
$ IPIV( J+1 ), WORK, N, WORK( N*NB+1 ) )
*
* Adjust IPIV and apply it back (J-th step picks (J+1)-th pivot)
*
DO J2 = J+2, MIN(N, J+JB+1)
IPIV( J2 ) = IPIV( J2 ) + J
IF( (J2.NE.IPIV(J2)) .AND. ((J1-K1).GT.2) ) THEN
CALL CSWAP( J1-K1-2, A( J2, 1 ), LDA,
$ A( IPIV(J2), 1 ), LDA )
END IF
END DO
J = J + JB
*
* Trailing submatrix update, where
* A(J2+1, J1-1) stores L(J2+1, J1) and
* WORK(J2+1, 1) stores H(J2+1, 1)
*
IF( J.LT.N ) THEN
*
* if the first panel and JB=1 (NB=1), then nothing to do
*
IF( J1.GT.1 .OR. JB.GT.1 ) THEN
*
* Merge rank-1 update with BLAS-3 update
*
ALPHA = CONJG( A( J+1, J ) )
A( J+1, J ) = ONE
CALL CCOPY( N-J, A( J+1, J-1 ), 1,
$ WORK( (J+1-J1+1)+JB*N ), 1 )
CALL CSCAL( N-J, ALPHA, WORK( (J+1-J1+1)+JB*N ), 1 )
*
* K1 identifies if the previous column of the panel has been
* explicitly stored, e.g., K1=0 and K2=1 for the first panel,
* and K1=1 and K2=0 for the rest
*
IF( J1.GT.1 ) THEN
*
* Not first panel
*
K2 = 1
ELSE
*
* First panel
*
K2 = 0
*
* First update skips the first column
*
JB = JB - 1
END IF
*
DO J2 = J+1, N, NB
NJ = MIN( NB, N-J2+1 )
*
* Update (J2, J2) diagonal block with CGEMV
*
J3 = J2
DO MJ = NJ-1, 1, -1
CALL CGEMM( 'No transpose', 'Conjugate transpose',
$ MJ, 1, JB+1,
$ -ONE, WORK( (J3-J1+1)+K1*N ), N,
$ A( J3, J1-K2 ), LDA,
$ ONE, A( J3, J3 ), LDA )
J3 = J3 + 1
END DO
*
* Update off-diagonal block of J2-th block column with CGEMM
*
CALL CGEMM( 'No transpose', 'Conjugate transpose',
$ N-J3+1, NJ, JB+1,
$ -ONE, WORK( (J3-J1+1)+K1*N ), N,
$ A( J2, J1-K2 ), LDA,
$ ONE, A( J3, J2 ), LDA )
END DO
*
* Recover T( J+1, J )
*
A( J+1, J ) = CONJG( ALPHA )
END IF
*
* WORK(J+1, 1) stores H(J+1, 1)
*
CALL CCOPY( N-J, A( J+1, J+1 ), 1, WORK( 1 ), 1 )
END IF
GO TO 11
END IF
*
20 CONTINUE
RETURN
*
* End of CHETRF_AA
*
END