*> \brief \b CLARZB applies a block reflector or its conjugate-transpose to a general matrix.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CLARZB + dependencies
*>
*> [TGZ]
*>
*> [ZIP]
*>
*> [TXT]
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE CLARZB( SIDE, TRANS, DIRECT, STOREV, M, N, K, L, V,
* LDV, T, LDT, C, LDC, WORK, LDWORK )
*
* .. Scalar Arguments ..
* CHARACTER DIRECT, SIDE, STOREV, TRANS
* INTEGER K, L, LDC, LDT, LDV, LDWORK, M, N
* ..
* .. Array Arguments ..
* COMPLEX C( LDC, * ), T( LDT, * ), V( LDV, * ),
* $ WORK( LDWORK, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CLARZB applies a complex block reflector H or its transpose H**H
*> to a complex distributed M-by-N C from the left or the right.
*>
*> Currently, only STOREV = 'R' and DIRECT = 'B' are supported.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] SIDE
*> \verbatim
*> SIDE is CHARACTER*1
*> = 'L': apply H or H**H from the Left
*> = 'R': apply H or H**H from the Right
*> \endverbatim
*>
*> \param[in] TRANS
*> \verbatim
*> TRANS is CHARACTER*1
*> = 'N': apply H (No transpose)
*> = 'C': apply H**H (Conjugate transpose)
*> \endverbatim
*>
*> \param[in] DIRECT
*> \verbatim
*> DIRECT is CHARACTER*1
*> Indicates how H is formed from a product of elementary
*> reflectors
*> = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
*> = 'B': H = H(k) . . . H(2) H(1) (Backward)
*> \endverbatim
*>
*> \param[in] STOREV
*> \verbatim
*> STOREV is CHARACTER*1
*> Indicates how the vectors which define the elementary
*> reflectors are stored:
*> = 'C': Columnwise (not supported yet)
*> = 'R': Rowwise
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix C.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix C.
*> \endverbatim
*>
*> \param[in] K
*> \verbatim
*> K is INTEGER
*> The order of the matrix T (= the number of elementary
*> reflectors whose product defines the block reflector).
*> \endverbatim
*>
*> \param[in] L
*> \verbatim
*> L is INTEGER
*> The number of columns of the matrix V containing the
*> meaningful part of the Householder reflectors.
*> If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
*> \endverbatim
*>
*> \param[in] V
*> \verbatim
*> V is COMPLEX array, dimension (LDV,NV).
*> If STOREV = 'C', NV = K; if STOREV = 'R', NV = L.
*> \endverbatim
*>
*> \param[in] LDV
*> \verbatim
*> LDV is INTEGER
*> The leading dimension of the array V.
*> If STOREV = 'C', LDV >= L; if STOREV = 'R', LDV >= K.
*> \endverbatim
*>
*> \param[in] T
*> \verbatim
*> T is COMPLEX array, dimension (LDT,K)
*> The triangular K-by-K matrix T in the representation of the
*> block reflector.
*> \endverbatim
*>
*> \param[in] LDT
*> \verbatim
*> LDT is INTEGER
*> The leading dimension of the array T. LDT >= K.
*> \endverbatim
*>
*> \param[in,out] C
*> \verbatim
*> C is COMPLEX array, dimension (LDC,N)
*> On entry, the M-by-N matrix C.
*> On exit, C is overwritten by H*C or H**H*C or C*H or C*H**H.
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*> LDC is INTEGER
*> The leading dimension of the array C. LDC >= max(1,M).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (LDWORK,K)
*> \endverbatim
*>
*> \param[in] LDWORK
*> \verbatim
*> LDWORK is INTEGER
*> The leading dimension of the array WORK.
*> If SIDE = 'L', LDWORK >= max(1,N);
*> if SIDE = 'R', LDWORK >= max(1,M).
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup complexOTHERcomputational
*
*> \par Contributors:
* ==================
*>
*> A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*> \endverbatim
*>
* =====================================================================
SUBROUTINE CLARZB( SIDE, TRANS, DIRECT, STOREV, M, N, K, L, V,
$ LDV, T, LDT, C, LDC, WORK, LDWORK )
*
* -- LAPACK computational routine (version 3.7.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
* .. Scalar Arguments ..
CHARACTER DIRECT, SIDE, STOREV, TRANS
INTEGER K, L, LDC, LDT, LDV, LDWORK, M, N
* ..
* .. Array Arguments ..
COMPLEX C( LDC, * ), T( LDT, * ), V( LDV, * ),
$ WORK( LDWORK, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
COMPLEX ONE
PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
* ..
* .. Local Scalars ..
CHARACTER TRANST
INTEGER I, INFO, J
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL CCOPY, CGEMM, CLACGV, CTRMM, XERBLA
* ..
* .. Executable Statements ..
*
* Quick return if possible
*
IF( M.LE.0 .OR. N.LE.0 )
$ RETURN
*
* Check for currently supported options
*
INFO = 0
IF( .NOT.LSAME( DIRECT, 'B' ) ) THEN
INFO = -3
ELSE IF( .NOT.LSAME( STOREV, 'R' ) ) THEN
INFO = -4
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CLARZB', -INFO )
RETURN
END IF
*
IF( LSAME( TRANS, 'N' ) ) THEN
TRANST = 'C'
ELSE
TRANST = 'N'
END IF
*
IF( LSAME( SIDE, 'L' ) ) THEN
*
* Form H * C or H**H * C
*
* W( 1:n, 1:k ) = C( 1:k, 1:n )**H
*
DO 10 J = 1, K
CALL CCOPY( N, C( J, 1 ), LDC, WORK( 1, J ), 1 )
10 CONTINUE
*
* W( 1:n, 1:k ) = W( 1:n, 1:k ) + ...
* C( m-l+1:m, 1:n )**H * V( 1:k, 1:l )**T
*
IF( L.GT.0 )
$ CALL CGEMM( 'Transpose', 'Conjugate transpose', N, K, L,
$ ONE, C( M-L+1, 1 ), LDC, V, LDV, ONE, WORK,
$ LDWORK )
*
* W( 1:n, 1:k ) = W( 1:n, 1:k ) * T**T or W( 1:m, 1:k ) * T
*
CALL CTRMM( 'Right', 'Lower', TRANST, 'Non-unit', N, K, ONE, T,
$ LDT, WORK, LDWORK )
*
* C( 1:k, 1:n ) = C( 1:k, 1:n ) - W( 1:n, 1:k )**H
*
DO 30 J = 1, N
DO 20 I = 1, K
C( I, J ) = C( I, J ) - WORK( J, I )
20 CONTINUE
30 CONTINUE
*
* C( m-l+1:m, 1:n ) = C( m-l+1:m, 1:n ) - ...
* V( 1:k, 1:l )**H * W( 1:n, 1:k )**H
*
IF( L.GT.0 )
$ CALL CGEMM( 'Transpose', 'Transpose', L, N, K, -ONE, V, LDV,
$ WORK, LDWORK, ONE, C( M-L+1, 1 ), LDC )
*
ELSE IF( LSAME( SIDE, 'R' ) ) THEN
*
* Form C * H or C * H**H
*
* W( 1:m, 1:k ) = C( 1:m, 1:k )
*
DO 40 J = 1, K
CALL CCOPY( M, C( 1, J ), 1, WORK( 1, J ), 1 )
40 CONTINUE
*
* W( 1:m, 1:k ) = W( 1:m, 1:k ) + ...
* C( 1:m, n-l+1:n ) * V( 1:k, 1:l )**H
*
IF( L.GT.0 )
$ CALL CGEMM( 'No transpose', 'Transpose', M, K, L, ONE,
$ C( 1, N-L+1 ), LDC, V, LDV, ONE, WORK, LDWORK )
*
* W( 1:m, 1:k ) = W( 1:m, 1:k ) * conjg( T ) or
* W( 1:m, 1:k ) * T**H
*
DO 50 J = 1, K
CALL CLACGV( K-J+1, T( J, J ), 1 )
50 CONTINUE
CALL CTRMM( 'Right', 'Lower', TRANS, 'Non-unit', M, K, ONE, T,
$ LDT, WORK, LDWORK )
DO 60 J = 1, K
CALL CLACGV( K-J+1, T( J, J ), 1 )
60 CONTINUE
*
* C( 1:m, 1:k ) = C( 1:m, 1:k ) - W( 1:m, 1:k )
*
DO 80 J = 1, K
DO 70 I = 1, M
C( I, J ) = C( I, J ) - WORK( I, J )
70 CONTINUE
80 CONTINUE
*
* C( 1:m, n-l+1:n ) = C( 1:m, n-l+1:n ) - ...
* W( 1:m, 1:k ) * conjg( V( 1:k, 1:l ) )
*
DO 90 J = 1, L
CALL CLACGV( K, V( 1, J ), 1 )
90 CONTINUE
IF( L.GT.0 )
$ CALL CGEMM( 'No transpose', 'No transpose', M, L, K, -ONE,
$ WORK, LDWORK, V, LDV, ONE, C( 1, N-L+1 ), LDC )
DO 100 J = 1, L
CALL CLACGV( K, V( 1, J ), 1 )
100 CONTINUE
*
END IF
*
RETURN
*
* End of CLARZB
*
END