*> \brief \b CSYCONVF
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CSYCONVF + dependencies
*>
*> [TGZ]
*>
*> [ZIP]
*>
*> [TXT]
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE CSYCONVF( UPLO, WAY, N, A, LDA, E, IPIV, INFO )
*
* .. Scalar Arguments ..
* CHARACTER UPLO, WAY
* INTEGER INFO, LDA, N
* ..
* .. Array Arguments ..
* INTEGER IPIV( * )
* COMPLEX A( LDA, * ), E( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*> If parameter WAY = 'C':
*> CSYCONVF converts the factorization output format used in
*> CSYTRF provided on entry in parameter A into the factorization
*> output format used in CSYTRF_RK (or CSYTRF_BK) that is stored
*> on exit in parameters A and E. It also coverts in place details of
*> the intechanges stored in IPIV from the format used in CSYTRF into
*> the format used in CSYTRF_RK (or CSYTRF_BK).
*>
*> If parameter WAY = 'R':
*> CSYCONVF performs the conversion in reverse direction, i.e.
*> converts the factorization output format used in CSYTRF_RK
*> (or CSYTRF_BK) provided on entry in parameters A and E into
*> the factorization output format used in CSYTRF that is stored
*> on exit in parameter A. It also coverts in place details of
*> the intechanges stored in IPIV from the format used in CSYTRF_RK
*> (or CSYTRF_BK) into the format used in CSYTRF.
*>
*> CSYCONVF can also convert in Hermitian matrix case, i.e. between
*> formats used in CHETRF and CHETRF_RK (or CHETRF_BK).
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> Specifies whether the details of the factorization are
*> stored as an upper or lower triangular matrix A.
*> = 'U': Upper triangular
*> = 'L': Lower triangular
*> \endverbatim
*>
*> \param[in] WAY
*> \verbatim
*> WAY is CHARACTER*1
*> = 'C': Convert
*> = 'R': Revert
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is COMPLEX array, dimension (LDA,N)
*>
*> 1) If WAY ='C':
*>
*> On entry, contains factorization details in format used in
*> CSYTRF:
*> a) all elements of the symmetric block diagonal
*> matrix D on the diagonal of A and on superdiagonal
*> (or subdiagonal) of A, and
*> b) If UPLO = 'U': multipliers used to obtain factor U
*> in the superdiagonal part of A.
*> If UPLO = 'L': multipliers used to obtain factor L
*> in the superdiagonal part of A.
*>
*> On exit, contains factorization details in format used in
*> CSYTRF_RK or CSYTRF_BK:
*> a) ONLY diagonal elements of the symmetric block diagonal
*> matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
*> (superdiagonal (or subdiagonal) elements of D
*> are stored on exit in array E), and
*> b) If UPLO = 'U': factor U in the superdiagonal part of A.
*> If UPLO = 'L': factor L in the subdiagonal part of A.
*>
*> 2) If WAY = 'R':
*>
*> On entry, contains factorization details in format used in
*> CSYTRF_RK or CSYTRF_BK:
*> a) ONLY diagonal elements of the symmetric block diagonal
*> matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
*> (superdiagonal (or subdiagonal) elements of D
*> are stored on exit in array E), and
*> b) If UPLO = 'U': factor U in the superdiagonal part of A.
*> If UPLO = 'L': factor L in the subdiagonal part of A.
*>
*> On exit, contains factorization details in format used in
*> CSYTRF:
*> a) all elements of the symmetric block diagonal
*> matrix D on the diagonal of A and on superdiagonal
*> (or subdiagonal) of A, and
*> b) If UPLO = 'U': multipliers used to obtain factor U
*> in the superdiagonal part of A.
*> If UPLO = 'L': multipliers used to obtain factor L
*> in the superdiagonal part of A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[in,out] E
*> \verbatim
*> E is COMPLEX array, dimension (N)
*>
*> 1) If WAY ='C':
*>
*> On entry, just a workspace.
*>
*> On exit, contains the superdiagonal (or subdiagonal)
*> elements of the symmetric block diagonal matrix D
*> with 1-by-1 or 2-by-2 diagonal blocks, where
*> If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0;
*> If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0.
*>
*> 2) If WAY = 'R':
*>
*> On entry, contains the superdiagonal (or subdiagonal)
*> elements of the symmetric block diagonal matrix D
*> with 1-by-1 or 2-by-2 diagonal blocks, where
*> If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced;
*> If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced.
*>
*> On exit, is not changed
*> \endverbatim
*.
*> \param[in,out] IPIV
*> \verbatim
*> IPIV is INTEGER array, dimension (N)
*>
*> 1) If WAY ='C':
*> On entry, details of the interchanges and the block
*> structure of D in the format used in CSYTRF.
*> On exit, details of the interchanges and the block
*> structure of D in the format used in CSYTRF_RK
*> ( or CSYTRF_BK).
*>
*> 1) If WAY ='R':
*> On entry, details of the interchanges and the block
*> structure of D in the format used in CSYTRF_RK
*> ( or CSYTRF_BK).
*> On exit, details of the interchanges and the block
*> structure of D in the format used in CSYTRF.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2017
*
*> \ingroup complexSYcomputational
*
*> \par Contributors:
* ==================
*>
*> \verbatim
*>
*> November 2017, Igor Kozachenko,
*> Computer Science Division,
*> University of California, Berkeley
*>
*> \endverbatim
* =====================================================================
SUBROUTINE CSYCONVF( UPLO, WAY, N, A, LDA, E, IPIV, INFO )
*
* -- LAPACK computational routine (version 3.8.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2017
*
* .. Scalar Arguments ..
CHARACTER UPLO, WAY
INTEGER INFO, LDA, N
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
COMPLEX A( LDA, * ), E( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
COMPLEX ZERO
PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) )
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
*
* .. External Subroutines ..
EXTERNAL CSWAP, XERBLA
* .. Local Scalars ..
LOGICAL UPPER, CONVERT
INTEGER I, IP
* ..
* .. Executable Statements ..
*
INFO = 0
UPPER = LSAME( UPLO, 'U' )
CONVERT = LSAME( WAY, 'C' )
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( .NOT.CONVERT .AND. .NOT.LSAME( WAY, 'R' ) ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -5
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CSYCONVF', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
IF( UPPER ) THEN
*
* Begin A is UPPER
*
IF ( CONVERT ) THEN
*
* Convert A (A is upper)
*
*
* Convert VALUE
*
* Assign superdiagonal entries of D to array E and zero out
* corresponding entries in input storage A
*
I = N
E( 1 ) = ZERO
DO WHILE ( I.GT.1 )
IF( IPIV( I ).LT.0 ) THEN
E( I ) = A( I-1, I )
E( I-1 ) = ZERO
A( I-1, I ) = ZERO
I = I - 1
ELSE
E( I ) = ZERO
END IF
I = I - 1
END DO
*
* Convert PERMUTATIONS and IPIV
*
* Apply permutations to submatrices of upper part of A
* in factorization order where i decreases from N to 1
*
I = N
DO WHILE ( I.GE.1 )
IF( IPIV( I ).GT.0 ) THEN
*
* 1-by-1 pivot interchange
*
* Swap rows i and IPIV(i) in A(1:i,N-i:N)
*
IP = IPIV( I )
IF( I.LT.N ) THEN
IF( IP.NE.I ) THEN
CALL CSWAP( N-I, A( I, I+1 ), LDA,
$ A( IP, I+1 ), LDA )
END IF
END IF
*
ELSE
*
* 2-by-2 pivot interchange
*
* Swap rows i-1 and IPIV(i) in A(1:i,N-i:N)
*
IP = -IPIV( I )
IF( I.LT.N ) THEN
IF( IP.NE.(I-1) ) THEN
CALL CSWAP( N-I, A( I-1, I+1 ), LDA,
$ A( IP, I+1 ), LDA )
END IF
END IF
*
* Convert IPIV
* There is no interchnge of rows i and and IPIV(i),
* so this should be reflected in IPIV format for
* *SYTRF_RK ( or *SYTRF_BK)
*
IPIV( I ) = I
*
I = I - 1
*
END IF
I = I - 1
END DO
*
ELSE
*
* Revert A (A is upper)
*
*
* Revert PERMUTATIONS and IPIV
*
* Apply permutations to submatrices of upper part of A
* in reverse factorization order where i increases from 1 to N
*
I = 1
DO WHILE ( I.LE.N )
IF( IPIV( I ).GT.0 ) THEN
*
* 1-by-1 pivot interchange
*
* Swap rows i and IPIV(i) in A(1:i,N-i:N)
*
IP = IPIV( I )
IF( I.LT.N ) THEN
IF( IP.NE.I ) THEN
CALL CSWAP( N-I, A( IP, I+1 ), LDA,
$ A( I, I+1 ), LDA )
END IF
END IF
*
ELSE
*
* 2-by-2 pivot interchange
*
* Swap rows i-1 and IPIV(i) in A(1:i,N-i:N)
*
I = I + 1
IP = -IPIV( I )
IF( I.LT.N ) THEN
IF( IP.NE.(I-1) ) THEN
CALL CSWAP( N-I, A( IP, I+1 ), LDA,
$ A( I-1, I+1 ), LDA )
END IF
END IF
*
* Convert IPIV
* There is one interchange of rows i-1 and IPIV(i-1),
* so this should be recorded in two consecutive entries
* in IPIV format for *SYTRF
*
IPIV( I ) = IPIV( I-1 )
*
END IF
I = I + 1
END DO
*
* Revert VALUE
* Assign superdiagonal entries of D from array E to
* superdiagonal entries of A.
*
I = N
DO WHILE ( I.GT.1 )
IF( IPIV( I ).LT.0 ) THEN
A( I-1, I ) = E( I )
I = I - 1
END IF
I = I - 1
END DO
*
* End A is UPPER
*
END IF
*
ELSE
*
* Begin A is LOWER
*
IF ( CONVERT ) THEN
*
* Convert A (A is lower)
*
*
* Convert VALUE
* Assign subdiagonal entries of D to array E and zero out
* corresponding entries in input storage A
*
I = 1
E( N ) = ZERO
DO WHILE ( I.LE.N )
IF( I.LT.N .AND. IPIV(I).LT.0 ) THEN
E( I ) = A( I+1, I )
E( I+1 ) = ZERO
A( I+1, I ) = ZERO
I = I + 1
ELSE
E( I ) = ZERO
END IF
I = I + 1
END DO
*
* Convert PERMUTATIONS and IPIV
*
* Apply permutations to submatrices of lower part of A
* in factorization order where k increases from 1 to N
*
I = 1
DO WHILE ( I.LE.N )
IF( IPIV( I ).GT.0 ) THEN
*
* 1-by-1 pivot interchange
*
* Swap rows i and IPIV(i) in A(i:N,1:i-1)
*
IP = IPIV( I )
IF ( I.GT.1 ) THEN
IF( IP.NE.I ) THEN
CALL CSWAP( I-1, A( I, 1 ), LDA,
$ A( IP, 1 ), LDA )
END IF
END IF
*
ELSE
*
* 2-by-2 pivot interchange
*
* Swap rows i+1 and IPIV(i) in A(i:N,1:i-1)
*
IP = -IPIV( I )
IF ( I.GT.1 ) THEN
IF( IP.NE.(I+1) ) THEN
CALL CSWAP( I-1, A( I+1, 1 ), LDA,
$ A( IP, 1 ), LDA )
END IF
END IF
*
* Convert IPIV
* There is no interchnge of rows i and and IPIV(i),
* so this should be reflected in IPIV format for
* *SYTRF_RK ( or *SYTRF_BK)
*
IPIV( I ) = I
*
I = I + 1
*
END IF
I = I + 1
END DO
*
ELSE
*
* Revert A (A is lower)
*
*
* Revert PERMUTATIONS and IPIV
*
* Apply permutations to submatrices of lower part of A
* in reverse factorization order where i decreases from N to 1
*
I = N
DO WHILE ( I.GE.1 )
IF( IPIV( I ).GT.0 ) THEN
*
* 1-by-1 pivot interchange
*
* Swap rows i and IPIV(i) in A(i:N,1:i-1)
*
IP = IPIV( I )
IF ( I.GT.1 ) THEN
IF( IP.NE.I ) THEN
CALL CSWAP( I-1, A( IP, 1 ), LDA,
$ A( I, 1 ), LDA )
END IF
END IF
*
ELSE
*
* 2-by-2 pivot interchange
*
* Swap rows i+1 and IPIV(i) in A(i:N,1:i-1)
*
I = I - 1
IP = -IPIV( I )
IF ( I.GT.1 ) THEN
IF( IP.NE.(I+1) ) THEN
CALL CSWAP( I-1, A( IP, 1 ), LDA,
$ A( I+1, 1 ), LDA )
END IF
END IF
*
* Convert IPIV
* There is one interchange of rows i+1 and IPIV(i+1),
* so this should be recorded in consecutive entries
* in IPIV format for *SYTRF
*
IPIV( I ) = IPIV( I+1 )
*
END IF
I = I - 1
END DO
*
* Revert VALUE
* Assign subdiagonal entries of D from array E to
* subgiagonal entries of A.
*
I = 1
DO WHILE ( I.LE.N-1 )
IF( IPIV( I ).LT.0 ) THEN
A( I + 1, I ) = E( I )
I = I + 1
END IF
I = I + 1
END DO
*
END IF
*
* End A is LOWER
*
END IF
RETURN
*
* End of CSYCONVF
*
END