*> \brief \b DGGHD3
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DGGHD3 + dependencies
*>
*> [TGZ]
*>
*> [ZIP]
*>
*> [TXT]
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE DGGHD3( COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q,
* LDQ, Z, LDZ, WORK, LWORK, INFO )
*
* .. Scalar Arguments ..
* CHARACTER COMPQ, COMPZ
* INTEGER IHI, ILO, INFO, LDA, LDB, LDQ, LDZ, N, LWORK
* ..
* .. Array Arguments ..
* DOUBLE PRECISION A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
* $ Z( LDZ, * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DGGHD3 reduces a pair of real matrices (A,B) to generalized upper
*> Hessenberg form using orthogonal transformations, where A is a
*> general matrix and B is upper triangular. The form of the
*> generalized eigenvalue problem is
*> A*x = lambda*B*x,
*> and B is typically made upper triangular by computing its QR
*> factorization and moving the orthogonal matrix Q to the left side
*> of the equation.
*>
*> This subroutine simultaneously reduces A to a Hessenberg matrix H:
*> Q**T*A*Z = H
*> and transforms B to another upper triangular matrix T:
*> Q**T*B*Z = T
*> in order to reduce the problem to its standard form
*> H*y = lambda*T*y
*> where y = Z**T*x.
*>
*> The orthogonal matrices Q and Z are determined as products of Givens
*> rotations. They may either be formed explicitly, or they may be
*> postmultiplied into input matrices Q1 and Z1, so that
*>
*> Q1 * A * Z1**T = (Q1*Q) * H * (Z1*Z)**T
*>
*> Q1 * B * Z1**T = (Q1*Q) * T * (Z1*Z)**T
*>
*> If Q1 is the orthogonal matrix from the QR factorization of B in the
*> original equation A*x = lambda*B*x, then DGGHD3 reduces the original
*> problem to generalized Hessenberg form.
*>
*> This is a blocked variant of DGGHRD, using matrix-matrix
*> multiplications for parts of the computation to enhance performance.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] COMPQ
*> \verbatim
*> COMPQ is CHARACTER*1
*> = 'N': do not compute Q;
*> = 'I': Q is initialized to the unit matrix, and the
*> orthogonal matrix Q is returned;
*> = 'V': Q must contain an orthogonal matrix Q1 on entry,
*> and the product Q1*Q is returned.
*> \endverbatim
*>
*> \param[in] COMPZ
*> \verbatim
*> COMPZ is CHARACTER*1
*> = 'N': do not compute Z;
*> = 'I': Z is initialized to the unit matrix, and the
*> orthogonal matrix Z is returned;
*> = 'V': Z must contain an orthogonal matrix Z1 on entry,
*> and the product Z1*Z is returned.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrices A and B. N >= 0.
*> \endverbatim
*>
*> \param[in] ILO
*> \verbatim
*> ILO is INTEGER
*> \endverbatim
*>
*> \param[in] IHI
*> \verbatim
*> IHI is INTEGER
*>
*> ILO and IHI mark the rows and columns of A which are to be
*> reduced. It is assumed that A is already upper triangular
*> in rows and columns 1:ILO-1 and IHI+1:N. ILO and IHI are
*> normally set by a previous call to DGGBAL; otherwise they
*> should be set to 1 and N respectively.
*> 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is DOUBLE PRECISION array, dimension (LDA, N)
*> On entry, the N-by-N general matrix to be reduced.
*> On exit, the upper triangle and the first subdiagonal of A
*> are overwritten with the upper Hessenberg matrix H, and the
*> rest is set to zero.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*> B is DOUBLE PRECISION array, dimension (LDB, N)
*> On entry, the N-by-N upper triangular matrix B.
*> On exit, the upper triangular matrix T = Q**T B Z. The
*> elements below the diagonal are set to zero.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >= max(1,N).
*> \endverbatim
*>
*> \param[in,out] Q
*> \verbatim
*> Q is DOUBLE PRECISION array, dimension (LDQ, N)
*> On entry, if COMPQ = 'V', the orthogonal matrix Q1,
*> typically from the QR factorization of B.
*> On exit, if COMPQ='I', the orthogonal matrix Q, and if
*> COMPQ = 'V', the product Q1*Q.
*> Not referenced if COMPQ='N'.
*> \endverbatim
*>
*> \param[in] LDQ
*> \verbatim
*> LDQ is INTEGER
*> The leading dimension of the array Q.
*> LDQ >= N if COMPQ='V' or 'I'; LDQ >= 1 otherwise.
*> \endverbatim
*>
*> \param[in,out] Z
*> \verbatim
*> Z is DOUBLE PRECISION array, dimension (LDZ, N)
*> On entry, if COMPZ = 'V', the orthogonal matrix Z1.
*> On exit, if COMPZ='I', the orthogonal matrix Z, and if
*> COMPZ = 'V', the product Z1*Z.
*> Not referenced if COMPZ='N'.
*> \endverbatim
*>
*> \param[in] LDZ
*> \verbatim
*> LDZ is INTEGER
*> The leading dimension of the array Z.
*> LDZ >= N if COMPZ='V' or 'I'; LDZ >= 1 otherwise.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension (LWORK)
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The length of the array WORK. LWORK >= 1.
*> For optimum performance LWORK >= 6*N*NB, where NB is the
*> optimal blocksize.
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
*> message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit.
*> < 0: if INFO = -i, the i-th argument had an illegal value.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date January 2015
*
*> \ingroup doubleOTHERcomputational
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> This routine reduces A to Hessenberg form and maintains B in
*> using a blocked variant of Moler and Stewart's original algorithm,
*> as described by Kagstrom, Kressner, Quintana-Orti, and Quintana-Orti
*> (BIT 2008).
*> \endverbatim
*>
* =====================================================================
SUBROUTINE DGGHD3( COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q,
$ LDQ, Z, LDZ, WORK, LWORK, INFO )
*
* -- LAPACK computational routine (version 3.8.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* January 2015
*
IMPLICIT NONE
*
* .. Scalar Arguments ..
CHARACTER COMPQ, COMPZ
INTEGER IHI, ILO, INFO, LDA, LDB, LDQ, LDZ, N, LWORK
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
$ Z( LDZ, * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
LOGICAL BLK22, INITQ, INITZ, LQUERY, WANTQ, WANTZ
CHARACTER*1 COMPQ2, COMPZ2
INTEGER COLA, I, IERR, J, J0, JCOL, JJ, JROW, K,
$ KACC22, LEN, LWKOPT, N2NB, NB, NBLST, NBMIN,
$ NH, NNB, NX, PPW, PPWO, PW, TOP, TOPQ
DOUBLE PRECISION C, C1, C2, S, S1, S2, TEMP, TEMP1, TEMP2, TEMP3
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ILAENV
EXTERNAL ILAENV, LSAME
* ..
* .. External Subroutines ..
EXTERNAL DGGHRD, DLARTG, DLASET, DORM22, DROT, DGEMM,
$ DGEMV, DTRMV, DLACPY, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, MAX
* ..
* .. Executable Statements ..
*
* Decode and test the input parameters.
*
INFO = 0
NB = ILAENV( 1, 'DGGHD3', ' ', N, ILO, IHI, -1 )
LWKOPT = MAX( 6*N*NB, 1 )
WORK( 1 ) = DBLE( LWKOPT )
INITQ = LSAME( COMPQ, 'I' )
WANTQ = INITQ .OR. LSAME( COMPQ, 'V' )
INITZ = LSAME( COMPZ, 'I' )
WANTZ = INITZ .OR. LSAME( COMPZ, 'V' )
LQUERY = ( LWORK.EQ.-1 )
*
IF( .NOT.LSAME( COMPQ, 'N' ) .AND. .NOT.WANTQ ) THEN
INFO = -1
ELSE IF( .NOT.LSAME( COMPZ, 'N' ) .AND. .NOT.WANTZ ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( ILO.LT.1 ) THEN
INFO = -4
ELSE IF( IHI.GT.N .OR. IHI.LT.ILO-1 ) THEN
INFO = -5
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -7
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -9
ELSE IF( ( WANTQ .AND. LDQ.LT.N ) .OR. LDQ.LT.1 ) THEN
INFO = -11
ELSE IF( ( WANTZ .AND. LDZ.LT.N ) .OR. LDZ.LT.1 ) THEN
INFO = -13
ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
INFO = -15
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DGGHD3', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Initialize Q and Z if desired.
*
IF( INITQ )
$ CALL DLASET( 'All', N, N, ZERO, ONE, Q, LDQ )
IF( INITZ )
$ CALL DLASET( 'All', N, N, ZERO, ONE, Z, LDZ )
*
* Zero out lower triangle of B.
*
IF( N.GT.1 )
$ CALL DLASET( 'Lower', N-1, N-1, ZERO, ZERO, B(2, 1), LDB )
*
* Quick return if possible
*
NH = IHI - ILO + 1
IF( NH.LE.1 ) THEN
WORK( 1 ) = ONE
RETURN
END IF
*
* Determine the blocksize.
*
NBMIN = ILAENV( 2, 'DGGHD3', ' ', N, ILO, IHI, -1 )
IF( NB.GT.1 .AND. NB.LT.NH ) THEN
*
* Determine when to use unblocked instead of blocked code.
*
NX = MAX( NB, ILAENV( 3, 'DGGHD3', ' ', N, ILO, IHI, -1 ) )
IF( NX.LT.NH ) THEN
*
* Determine if workspace is large enough for blocked code.
*
IF( LWORK.LT.LWKOPT ) THEN
*
* Not enough workspace to use optimal NB: determine the
* minimum value of NB, and reduce NB or force use of
* unblocked code.
*
NBMIN = MAX( 2, ILAENV( 2, 'DGGHD3', ' ', N, ILO, IHI,
$ -1 ) )
IF( LWORK.GE.6*N*NBMIN ) THEN
NB = LWORK / ( 6*N )
ELSE
NB = 1
END IF
END IF
END IF
END IF
*
IF( NB.LT.NBMIN .OR. NB.GE.NH ) THEN
*
* Use unblocked code below
*
JCOL = ILO
*
ELSE
*
* Use blocked code
*
KACC22 = ILAENV( 16, 'DGGHD3', ' ', N, ILO, IHI, -1 )
BLK22 = KACC22.EQ.2
DO JCOL = ILO, IHI-2, NB
NNB = MIN( NB, IHI-JCOL-1 )
*
* Initialize small orthogonal factors that will hold the
* accumulated Givens rotations in workspace.
* N2NB denotes the number of 2*NNB-by-2*NNB factors
* NBLST denotes the (possibly smaller) order of the last
* factor.
*
N2NB = ( IHI-JCOL-1 ) / NNB - 1
NBLST = IHI - JCOL - N2NB*NNB
CALL DLASET( 'All', NBLST, NBLST, ZERO, ONE, WORK, NBLST )
PW = NBLST * NBLST + 1
DO I = 1, N2NB
CALL DLASET( 'All', 2*NNB, 2*NNB, ZERO, ONE,
$ WORK( PW ), 2*NNB )
PW = PW + 4*NNB*NNB
END DO
*
* Reduce columns JCOL:JCOL+NNB-1 of A to Hessenberg form.
*
DO J = JCOL, JCOL+NNB-1
*
* Reduce Jth column of A. Store cosines and sines in Jth
* column of A and B, respectively.
*
DO I = IHI, J+2, -1
TEMP = A( I-1, J )
CALL DLARTG( TEMP, A( I, J ), C, S, A( I-1, J ) )
A( I, J ) = C
B( I, J ) = S
END DO
*
* Accumulate Givens rotations into workspace array.
*
PPW = ( NBLST + 1 )*( NBLST - 2 ) - J + JCOL + 1
LEN = 2 + J - JCOL
JROW = J + N2NB*NNB + 2
DO I = IHI, JROW, -1
C = A( I, J )
S = B( I, J )
DO JJ = PPW, PPW+LEN-1
TEMP = WORK( JJ + NBLST )
WORK( JJ + NBLST ) = C*TEMP - S*WORK( JJ )
WORK( JJ ) = S*TEMP + C*WORK( JJ )
END DO
LEN = LEN + 1
PPW = PPW - NBLST - 1
END DO
*
PPWO = NBLST*NBLST + ( NNB+J-JCOL-1 )*2*NNB + NNB
J0 = JROW - NNB
DO JROW = J0, J+2, -NNB
PPW = PPWO
LEN = 2 + J - JCOL
DO I = JROW+NNB-1, JROW, -1
C = A( I, J )
S = B( I, J )
DO JJ = PPW, PPW+LEN-1
TEMP = WORK( JJ + 2*NNB )
WORK( JJ + 2*NNB ) = C*TEMP - S*WORK( JJ )
WORK( JJ ) = S*TEMP + C*WORK( JJ )
END DO
LEN = LEN + 1
PPW = PPW - 2*NNB - 1
END DO
PPWO = PPWO + 4*NNB*NNB
END DO
*
* TOP denotes the number of top rows in A and B that will
* not be updated during the next steps.
*
IF( JCOL.LE.2 ) THEN
TOP = 0
ELSE
TOP = JCOL
END IF
*
* Propagate transformations through B and replace stored
* left sines/cosines by right sines/cosines.
*
DO JJ = N, J+1, -1
*
* Update JJth column of B.
*
DO I = MIN( JJ+1, IHI ), J+2, -1
C = A( I, J )
S = B( I, J )
TEMP = B( I, JJ )
B( I, JJ ) = C*TEMP - S*B( I-1, JJ )
B( I-1, JJ ) = S*TEMP + C*B( I-1, JJ )
END DO
*
* Annihilate B( JJ+1, JJ ).
*
IF( JJ.LT.IHI ) THEN
TEMP = B( JJ+1, JJ+1 )
CALL DLARTG( TEMP, B( JJ+1, JJ ), C, S,
$ B( JJ+1, JJ+1 ) )
B( JJ+1, JJ ) = ZERO
CALL DROT( JJ-TOP, B( TOP+1, JJ+1 ), 1,
$ B( TOP+1, JJ ), 1, C, S )
A( JJ+1, J ) = C
B( JJ+1, J ) = -S
END IF
END DO
*
* Update A by transformations from right.
* Explicit loop unrolling provides better performance
* compared to DLASR.
* CALL DLASR( 'Right', 'Variable', 'Backward', IHI-TOP,
* $ IHI-J, A( J+2, J ), B( J+2, J ),
* $ A( TOP+1, J+1 ), LDA )
*
JJ = MOD( IHI-J-1, 3 )
DO I = IHI-J-3, JJ+1, -3
C = A( J+1+I, J )
S = -B( J+1+I, J )
C1 = A( J+2+I, J )
S1 = -B( J+2+I, J )
C2 = A( J+3+I, J )
S2 = -B( J+3+I, J )
*
DO K = TOP+1, IHI
TEMP = A( K, J+I )
TEMP1 = A( K, J+I+1 )
TEMP2 = A( K, J+I+2 )
TEMP3 = A( K, J+I+3 )
A( K, J+I+3 ) = C2*TEMP3 + S2*TEMP2
TEMP2 = -S2*TEMP3 + C2*TEMP2
A( K, J+I+2 ) = C1*TEMP2 + S1*TEMP1
TEMP1 = -S1*TEMP2 + C1*TEMP1
A( K, J+I+1 ) = C*TEMP1 + S*TEMP
A( K, J+I ) = -S*TEMP1 + C*TEMP
END DO
END DO
*
IF( JJ.GT.0 ) THEN
DO I = JJ, 1, -1
CALL DROT( IHI-TOP, A( TOP+1, J+I+1 ), 1,
$ A( TOP+1, J+I ), 1, A( J+1+I, J ),
$ -B( J+1+I, J ) )
END DO
END IF
*
* Update (J+1)th column of A by transformations from left.
*
IF ( J .LT. JCOL + NNB - 1 ) THEN
LEN = 1 + J - JCOL
*
* Multiply with the trailing accumulated orthogonal
* matrix, which takes the form
*
* [ U11 U12 ]
* U = [ ],
* [ U21 U22 ]
*
* where U21 is a LEN-by-LEN matrix and U12 is lower
* triangular.
*
JROW = IHI - NBLST + 1
CALL DGEMV( 'Transpose', NBLST, LEN, ONE, WORK,
$ NBLST, A( JROW, J+1 ), 1, ZERO,
$ WORK( PW ), 1 )
PPW = PW + LEN
DO I = JROW, JROW+NBLST-LEN-1
WORK( PPW ) = A( I, J+1 )
PPW = PPW + 1
END DO
CALL DTRMV( 'Lower', 'Transpose', 'Non-unit',
$ NBLST-LEN, WORK( LEN*NBLST + 1 ), NBLST,
$ WORK( PW+LEN ), 1 )
CALL DGEMV( 'Transpose', LEN, NBLST-LEN, ONE,
$ WORK( (LEN+1)*NBLST - LEN + 1 ), NBLST,
$ A( JROW+NBLST-LEN, J+1 ), 1, ONE,
$ WORK( PW+LEN ), 1 )
PPW = PW
DO I = JROW, JROW+NBLST-1
A( I, J+1 ) = WORK( PPW )
PPW = PPW + 1
END DO
*
* Multiply with the other accumulated orthogonal
* matrices, which take the form
*
* [ U11 U12 0 ]
* [ ]
* U = [ U21 U22 0 ],
* [ ]
* [ 0 0 I ]
*
* where I denotes the (NNB-LEN)-by-(NNB-LEN) identity
* matrix, U21 is a LEN-by-LEN upper triangular matrix
* and U12 is an NNB-by-NNB lower triangular matrix.
*
PPWO = 1 + NBLST*NBLST
J0 = JROW - NNB
DO JROW = J0, JCOL+1, -NNB
PPW = PW + LEN
DO I = JROW, JROW+NNB-1
WORK( PPW ) = A( I, J+1 )
PPW = PPW + 1
END DO
PPW = PW
DO I = JROW+NNB, JROW+NNB+LEN-1
WORK( PPW ) = A( I, J+1 )
PPW = PPW + 1
END DO
CALL DTRMV( 'Upper', 'Transpose', 'Non-unit', LEN,
$ WORK( PPWO + NNB ), 2*NNB, WORK( PW ),
$ 1 )
CALL DTRMV( 'Lower', 'Transpose', 'Non-unit', NNB,
$ WORK( PPWO + 2*LEN*NNB ),
$ 2*NNB, WORK( PW + LEN ), 1 )
CALL DGEMV( 'Transpose', NNB, LEN, ONE,
$ WORK( PPWO ), 2*NNB, A( JROW, J+1 ), 1,
$ ONE, WORK( PW ), 1 )
CALL DGEMV( 'Transpose', LEN, NNB, ONE,
$ WORK( PPWO + 2*LEN*NNB + NNB ), 2*NNB,
$ A( JROW+NNB, J+1 ), 1, ONE,
$ WORK( PW+LEN ), 1 )
PPW = PW
DO I = JROW, JROW+LEN+NNB-1
A( I, J+1 ) = WORK( PPW )
PPW = PPW + 1
END DO
PPWO = PPWO + 4*NNB*NNB
END DO
END IF
END DO
*
* Apply accumulated orthogonal matrices to A.
*
COLA = N - JCOL - NNB + 1
J = IHI - NBLST + 1
CALL DGEMM( 'Transpose', 'No Transpose', NBLST,
$ COLA, NBLST, ONE, WORK, NBLST,
$ A( J, JCOL+NNB ), LDA, ZERO, WORK( PW ),
$ NBLST )
CALL DLACPY( 'All', NBLST, COLA, WORK( PW ), NBLST,
$ A( J, JCOL+NNB ), LDA )
PPWO = NBLST*NBLST + 1
J0 = J - NNB
DO J = J0, JCOL+1, -NNB
IF ( BLK22 ) THEN
*
* Exploit the structure of
*
* [ U11 U12 ]
* U = [ ]
* [ U21 U22 ],
*
* where all blocks are NNB-by-NNB, U21 is upper
* triangular and U12 is lower triangular.
*
CALL DORM22( 'Left', 'Transpose', 2*NNB, COLA, NNB,
$ NNB, WORK( PPWO ), 2*NNB,
$ A( J, JCOL+NNB ), LDA, WORK( PW ),
$ LWORK-PW+1, IERR )
ELSE
*
* Ignore the structure of U.
*
CALL DGEMM( 'Transpose', 'No Transpose', 2*NNB,
$ COLA, 2*NNB, ONE, WORK( PPWO ), 2*NNB,
$ A( J, JCOL+NNB ), LDA, ZERO, WORK( PW ),
$ 2*NNB )
CALL DLACPY( 'All', 2*NNB, COLA, WORK( PW ), 2*NNB,
$ A( J, JCOL+NNB ), LDA )
END IF
PPWO = PPWO + 4*NNB*NNB
END DO
*
* Apply accumulated orthogonal matrices to Q.
*
IF( WANTQ ) THEN
J = IHI - NBLST + 1
IF ( INITQ ) THEN
TOPQ = MAX( 2, J - JCOL + 1 )
NH = IHI - TOPQ + 1
ELSE
TOPQ = 1
NH = N
END IF
CALL DGEMM( 'No Transpose', 'No Transpose', NH,
$ NBLST, NBLST, ONE, Q( TOPQ, J ), LDQ,
$ WORK, NBLST, ZERO, WORK( PW ), NH )
CALL DLACPY( 'All', NH, NBLST, WORK( PW ), NH,
$ Q( TOPQ, J ), LDQ )
PPWO = NBLST*NBLST + 1
J0 = J - NNB
DO J = J0, JCOL+1, -NNB
IF ( INITQ ) THEN
TOPQ = MAX( 2, J - JCOL + 1 )
NH = IHI - TOPQ + 1
END IF
IF ( BLK22 ) THEN
*
* Exploit the structure of U.
*
CALL DORM22( 'Right', 'No Transpose', NH, 2*NNB,
$ NNB, NNB, WORK( PPWO ), 2*NNB,
$ Q( TOPQ, J ), LDQ, WORK( PW ),
$ LWORK-PW+1, IERR )
ELSE
*
* Ignore the structure of U.
*
CALL DGEMM( 'No Transpose', 'No Transpose', NH,
$ 2*NNB, 2*NNB, ONE, Q( TOPQ, J ), LDQ,
$ WORK( PPWO ), 2*NNB, ZERO, WORK( PW ),
$ NH )
CALL DLACPY( 'All', NH, 2*NNB, WORK( PW ), NH,
$ Q( TOPQ, J ), LDQ )
END IF
PPWO = PPWO + 4*NNB*NNB
END DO
END IF
*
* Accumulate right Givens rotations if required.
*
IF ( WANTZ .OR. TOP.GT.0 ) THEN
*
* Initialize small orthogonal factors that will hold the
* accumulated Givens rotations in workspace.
*
CALL DLASET( 'All', NBLST, NBLST, ZERO, ONE, WORK,
$ NBLST )
PW = NBLST * NBLST + 1
DO I = 1, N2NB
CALL DLASET( 'All', 2*NNB, 2*NNB, ZERO, ONE,
$ WORK( PW ), 2*NNB )
PW = PW + 4*NNB*NNB
END DO
*
* Accumulate Givens rotations into workspace array.
*
DO J = JCOL, JCOL+NNB-1
PPW = ( NBLST + 1 )*( NBLST - 2 ) - J + JCOL + 1
LEN = 2 + J - JCOL
JROW = J + N2NB*NNB + 2
DO I = IHI, JROW, -1
C = A( I, J )
A( I, J ) = ZERO
S = B( I, J )
B( I, J ) = ZERO
DO JJ = PPW, PPW+LEN-1
TEMP = WORK( JJ + NBLST )
WORK( JJ + NBLST ) = C*TEMP - S*WORK( JJ )
WORK( JJ ) = S*TEMP + C*WORK( JJ )
END DO
LEN = LEN + 1
PPW = PPW - NBLST - 1
END DO
*
PPWO = NBLST*NBLST + ( NNB+J-JCOL-1 )*2*NNB + NNB
J0 = JROW - NNB
DO JROW = J0, J+2, -NNB
PPW = PPWO
LEN = 2 + J - JCOL
DO I = JROW+NNB-1, JROW, -1
C = A( I, J )
A( I, J ) = ZERO
S = B( I, J )
B( I, J ) = ZERO
DO JJ = PPW, PPW+LEN-1
TEMP = WORK( JJ + 2*NNB )
WORK( JJ + 2*NNB ) = C*TEMP - S*WORK( JJ )
WORK( JJ ) = S*TEMP + C*WORK( JJ )
END DO
LEN = LEN + 1
PPW = PPW - 2*NNB - 1
END DO
PPWO = PPWO + 4*NNB*NNB
END DO
END DO
ELSE
*
CALL DLASET( 'Lower', IHI - JCOL - 1, NNB, ZERO, ZERO,
$ A( JCOL + 2, JCOL ), LDA )
CALL DLASET( 'Lower', IHI - JCOL - 1, NNB, ZERO, ZERO,
$ B( JCOL + 2, JCOL ), LDB )
END IF
*
* Apply accumulated orthogonal matrices to A and B.
*
IF ( TOP.GT.0 ) THEN
J = IHI - NBLST + 1
CALL DGEMM( 'No Transpose', 'No Transpose', TOP,
$ NBLST, NBLST, ONE, A( 1, J ), LDA,
$ WORK, NBLST, ZERO, WORK( PW ), TOP )
CALL DLACPY( 'All', TOP, NBLST, WORK( PW ), TOP,
$ A( 1, J ), LDA )
PPWO = NBLST*NBLST + 1
J0 = J - NNB
DO J = J0, JCOL+1, -NNB
IF ( BLK22 ) THEN
*
* Exploit the structure of U.
*
CALL DORM22( 'Right', 'No Transpose', TOP, 2*NNB,
$ NNB, NNB, WORK( PPWO ), 2*NNB,
$ A( 1, J ), LDA, WORK( PW ),
$ LWORK-PW+1, IERR )
ELSE
*
* Ignore the structure of U.
*
CALL DGEMM( 'No Transpose', 'No Transpose', TOP,
$ 2*NNB, 2*NNB, ONE, A( 1, J ), LDA,
$ WORK( PPWO ), 2*NNB, ZERO,
$ WORK( PW ), TOP )
CALL DLACPY( 'All', TOP, 2*NNB, WORK( PW ), TOP,
$ A( 1, J ), LDA )
END IF
PPWO = PPWO + 4*NNB*NNB
END DO
*
J = IHI - NBLST + 1
CALL DGEMM( 'No Transpose', 'No Transpose', TOP,
$ NBLST, NBLST, ONE, B( 1, J ), LDB,
$ WORK, NBLST, ZERO, WORK( PW ), TOP )
CALL DLACPY( 'All', TOP, NBLST, WORK( PW ), TOP,
$ B( 1, J ), LDB )
PPWO = NBLST*NBLST + 1
J0 = J - NNB
DO J = J0, JCOL+1, -NNB
IF ( BLK22 ) THEN
*
* Exploit the structure of U.
*
CALL DORM22( 'Right', 'No Transpose', TOP, 2*NNB,
$ NNB, NNB, WORK( PPWO ), 2*NNB,
$ B( 1, J ), LDB, WORK( PW ),
$ LWORK-PW+1, IERR )
ELSE
*
* Ignore the structure of U.
*
CALL DGEMM( 'No Transpose', 'No Transpose', TOP,
$ 2*NNB, 2*NNB, ONE, B( 1, J ), LDB,
$ WORK( PPWO ), 2*NNB, ZERO,
$ WORK( PW ), TOP )
CALL DLACPY( 'All', TOP, 2*NNB, WORK( PW ), TOP,
$ B( 1, J ), LDB )
END IF
PPWO = PPWO + 4*NNB*NNB
END DO
END IF
*
* Apply accumulated orthogonal matrices to Z.
*
IF( WANTZ ) THEN
J = IHI - NBLST + 1
IF ( INITQ ) THEN
TOPQ = MAX( 2, J - JCOL + 1 )
NH = IHI - TOPQ + 1
ELSE
TOPQ = 1
NH = N
END IF
CALL DGEMM( 'No Transpose', 'No Transpose', NH,
$ NBLST, NBLST, ONE, Z( TOPQ, J ), LDZ,
$ WORK, NBLST, ZERO, WORK( PW ), NH )
CALL DLACPY( 'All', NH, NBLST, WORK( PW ), NH,
$ Z( TOPQ, J ), LDZ )
PPWO = NBLST*NBLST + 1
J0 = J - NNB
DO J = J0, JCOL+1, -NNB
IF ( INITQ ) THEN
TOPQ = MAX( 2, J - JCOL + 1 )
NH = IHI - TOPQ + 1
END IF
IF ( BLK22 ) THEN
*
* Exploit the structure of U.
*
CALL DORM22( 'Right', 'No Transpose', NH, 2*NNB,
$ NNB, NNB, WORK( PPWO ), 2*NNB,
$ Z( TOPQ, J ), LDZ, WORK( PW ),
$ LWORK-PW+1, IERR )
ELSE
*
* Ignore the structure of U.
*
CALL DGEMM( 'No Transpose', 'No Transpose', NH,
$ 2*NNB, 2*NNB, ONE, Z( TOPQ, J ), LDZ,
$ WORK( PPWO ), 2*NNB, ZERO, WORK( PW ),
$ NH )
CALL DLACPY( 'All', NH, 2*NNB, WORK( PW ), NH,
$ Z( TOPQ, J ), LDZ )
END IF
PPWO = PPWO + 4*NNB*NNB
END DO
END IF
END DO
END IF
*
* Use unblocked code to reduce the rest of the matrix
* Avoid re-initialization of modified Q and Z.
*
COMPQ2 = COMPQ
COMPZ2 = COMPZ
IF ( JCOL.NE.ILO ) THEN
IF ( WANTQ )
$ COMPQ2 = 'V'
IF ( WANTZ )
$ COMPZ2 = 'V'
END IF
*
IF ( JCOL.LT.IHI )
$ CALL DGGHRD( COMPQ2, COMPZ2, N, JCOL, IHI, A, LDA, B, LDB, Q,
$ LDQ, Z, LDZ, IERR )
WORK( 1 ) = DBLE( LWKOPT )
*
RETURN
*
* End of DGGHD3
*
END