*> \brief \b DLANEG computes the Sturm count.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DLANEG + dependencies
*>
*> [TGZ]
*>
*> [ZIP]
*>
*> [TXT]
*> \endhtmlonly
*
* Definition:
* ===========
*
* INTEGER FUNCTION DLANEG( N, D, LLD, SIGMA, PIVMIN, R )
*
* .. Scalar Arguments ..
* INTEGER N, R
* DOUBLE PRECISION PIVMIN, SIGMA
* ..
* .. Array Arguments ..
* DOUBLE PRECISION D( * ), LLD( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DLANEG computes the Sturm count, the number of negative pivots
*> encountered while factoring tridiagonal T - sigma I = L D L^T.
*> This implementation works directly on the factors without forming
*> the tridiagonal matrix T. The Sturm count is also the number of
*> eigenvalues of T less than sigma.
*>
*> This routine is called from DLARRB.
*>
*> The current routine does not use the PIVMIN parameter but rather
*> requires IEEE-754 propagation of Infinities and NaNs. This
*> routine also has no input range restrictions but does require
*> default exception handling such that x/0 produces Inf when x is
*> non-zero, and Inf/Inf produces NaN. For more information, see:
*>
*> Marques, Riedy, and Voemel, "Benefits of IEEE-754 Features in
*> Modern Symmetric Tridiagonal Eigensolvers," SIAM Journal on
*> Scientific Computing, v28, n5, 2006. DOI 10.1137/050641624
*> (Tech report version in LAWN 172 with the same title.)
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix.
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*> D is DOUBLE PRECISION array, dimension (N)
*> The N diagonal elements of the diagonal matrix D.
*> \endverbatim
*>
*> \param[in] LLD
*> \verbatim
*> LLD is DOUBLE PRECISION array, dimension (N-1)
*> The (N-1) elements L(i)*L(i)*D(i).
*> \endverbatim
*>
*> \param[in] SIGMA
*> \verbatim
*> SIGMA is DOUBLE PRECISION
*> Shift amount in T - sigma I = L D L^T.
*> \endverbatim
*>
*> \param[in] PIVMIN
*> \verbatim
*> PIVMIN is DOUBLE PRECISION
*> The minimum pivot in the Sturm sequence. May be used
*> when zero pivots are encountered on non-IEEE-754
*> architectures.
*> \endverbatim
*>
*> \param[in] R
*> \verbatim
*> R is INTEGER
*> The twist index for the twisted factorization that is used
*> for the negcount.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup OTHERauxiliary
*
*> \par Contributors:
* ==================
*>
*> Osni Marques, LBNL/NERSC, USA \n
*> Christof Voemel, University of California, Berkeley, USA \n
*> Jason Riedy, University of California, Berkeley, USA \n
*>
* =====================================================================
INTEGER FUNCTION DLANEG( N, D, LLD, SIGMA, PIVMIN, R )
*
* -- LAPACK auxiliary routine (version 3.7.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
* .. Scalar Arguments ..
INTEGER N, R
DOUBLE PRECISION PIVMIN, SIGMA
* ..
* .. Array Arguments ..
DOUBLE PRECISION D( * ), LLD( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
* Some architectures propagate Infinities and NaNs very slowly, so
* the code computes counts in BLKLEN chunks. Then a NaN can
* propagate at most BLKLEN columns before being detected. This is
* not a general tuning parameter; it needs only to be just large
* enough that the overhead is tiny in common cases.
INTEGER BLKLEN
PARAMETER ( BLKLEN = 128 )
* ..
* .. Local Scalars ..
INTEGER BJ, J, NEG1, NEG2, NEGCNT
DOUBLE PRECISION BSAV, DMINUS, DPLUS, GAMMA, P, T, TMP
LOGICAL SAWNAN
* ..
* .. Intrinsic Functions ..
INTRINSIC MIN, MAX
* ..
* .. External Functions ..
LOGICAL DISNAN
EXTERNAL DISNAN
* ..
* .. Executable Statements ..
NEGCNT = 0
* I) upper part: L D L^T - SIGMA I = L+ D+ L+^T
T = -SIGMA
DO 210 BJ = 1, R-1, BLKLEN
NEG1 = 0
BSAV = T
DO 21 J = BJ, MIN(BJ+BLKLEN-1, R-1)
DPLUS = D( J ) + T
IF( DPLUS.LT.ZERO ) NEG1 = NEG1 + 1
TMP = T / DPLUS
T = TMP * LLD( J ) - SIGMA
21 CONTINUE
SAWNAN = DISNAN( T )
* Run a slower version of the above loop if a NaN is detected.
* A NaN should occur only with a zero pivot after an infinite
* pivot. In that case, substituting 1 for T/DPLUS is the
* correct limit.
IF( SAWNAN ) THEN
NEG1 = 0
T = BSAV
DO 22 J = BJ, MIN(BJ+BLKLEN-1, R-1)
DPLUS = D( J ) + T
IF( DPLUS.LT.ZERO ) NEG1 = NEG1 + 1
TMP = T / DPLUS
IF (DISNAN(TMP)) TMP = ONE
T = TMP * LLD(J) - SIGMA
22 CONTINUE
END IF
NEGCNT = NEGCNT + NEG1
210 CONTINUE
*
* II) lower part: L D L^T - SIGMA I = U- D- U-^T
P = D( N ) - SIGMA
DO 230 BJ = N-1, R, -BLKLEN
NEG2 = 0
BSAV = P
DO 23 J = BJ, MAX(BJ-BLKLEN+1, R), -1
DMINUS = LLD( J ) + P
IF( DMINUS.LT.ZERO ) NEG2 = NEG2 + 1
TMP = P / DMINUS
P = TMP * D( J ) - SIGMA
23 CONTINUE
SAWNAN = DISNAN( P )
* As above, run a slower version that substitutes 1 for Inf/Inf.
*
IF( SAWNAN ) THEN
NEG2 = 0
P = BSAV
DO 24 J = BJ, MAX(BJ-BLKLEN+1, R), -1
DMINUS = LLD( J ) + P
IF( DMINUS.LT.ZERO ) NEG2 = NEG2 + 1
TMP = P / DMINUS
IF (DISNAN(TMP)) TMP = ONE
P = TMP * D(J) - SIGMA
24 CONTINUE
END IF
NEGCNT = NEGCNT + NEG2
230 CONTINUE
*
* III) Twist index
* T was shifted by SIGMA initially.
GAMMA = (T + SIGMA) + P
IF( GAMMA.LT.ZERO ) NEGCNT = NEGCNT+1
DLANEG = NEGCNT
END