*> \brief \b SLAED1 used by sstedc. Computes the updated eigensystem of a diagonal matrix after modification by a rank-one symmetric matrix. Used when the original matrix is tridiagonal.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SLAED1 + dependencies
*>
*> [TGZ]
*>
*> [ZIP]
*>
*> [TXT]
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE SLAED1( N, D, Q, LDQ, INDXQ, RHO, CUTPNT, WORK, IWORK,
* INFO )
*
* .. Scalar Arguments ..
* INTEGER CUTPNT, INFO, LDQ, N
* REAL RHO
* ..
* .. Array Arguments ..
* INTEGER INDXQ( * ), IWORK( * )
* REAL D( * ), Q( LDQ, * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SLAED1 computes the updated eigensystem of a diagonal
*> matrix after modification by a rank-one symmetric matrix. This
*> routine is used only for the eigenproblem which requires all
*> eigenvalues and eigenvectors of a tridiagonal matrix. SLAED7 handles
*> the case in which eigenvalues only or eigenvalues and eigenvectors
*> of a full symmetric matrix (which was reduced to tridiagonal form)
*> are desired.
*>
*> T = Q(in) ( D(in) + RHO * Z*Z**T ) Q**T(in) = Q(out) * D(out) * Q**T(out)
*>
*> where Z = Q**T*u, u is a vector of length N with ones in the
*> CUTPNT and CUTPNT + 1 th elements and zeros elsewhere.
*>
*> The eigenvectors of the original matrix are stored in Q, and the
*> eigenvalues are in D. The algorithm consists of three stages:
*>
*> The first stage consists of deflating the size of the problem
*> when there are multiple eigenvalues or if there is a zero in
*> the Z vector. For each such occurrence the dimension of the
*> secular equation problem is reduced by one. This stage is
*> performed by the routine SLAED2.
*>
*> The second stage consists of calculating the updated
*> eigenvalues. This is done by finding the roots of the secular
*> equation via the routine SLAED4 (as called by SLAED3).
*> This routine also calculates the eigenvectors of the current
*> problem.
*>
*> The final stage consists of computing the updated eigenvectors
*> directly using the updated eigenvalues. The eigenvectors for
*> the current problem are multiplied with the eigenvectors from
*> the overall problem.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The dimension of the symmetric tridiagonal matrix. N >= 0.
*> \endverbatim
*>
*> \param[in,out] D
*> \verbatim
*> D is REAL array, dimension (N)
*> On entry, the eigenvalues of the rank-1-perturbed matrix.
*> On exit, the eigenvalues of the repaired matrix.
*> \endverbatim
*>
*> \param[in,out] Q
*> \verbatim
*> Q is REAL array, dimension (LDQ,N)
*> On entry, the eigenvectors of the rank-1-perturbed matrix.
*> On exit, the eigenvectors of the repaired tridiagonal matrix.
*> \endverbatim
*>
*> \param[in] LDQ
*> \verbatim
*> LDQ is INTEGER
*> The leading dimension of the array Q. LDQ >= max(1,N).
*> \endverbatim
*>
*> \param[in,out] INDXQ
*> \verbatim
*> INDXQ is INTEGER array, dimension (N)
*> On entry, the permutation which separately sorts the two
*> subproblems in D into ascending order.
*> On exit, the permutation which will reintegrate the
*> subproblems back into sorted order,
*> i.e. D( INDXQ( I = 1, N ) ) will be in ascending order.
*> \endverbatim
*>
*> \param[in] RHO
*> \verbatim
*> RHO is REAL
*> The subdiagonal entry used to create the rank-1 modification.
*> \endverbatim
*>
*> \param[in] CUTPNT
*> \verbatim
*> CUTPNT is INTEGER
*> The location of the last eigenvalue in the leading sub-matrix.
*> min(1,N) <= CUTPNT <= N/2.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is REAL array, dimension (4*N + N**2)
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*> IWORK is INTEGER array, dimension (4*N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit.
*> < 0: if INFO = -i, the i-th argument had an illegal value.
*> > 0: if INFO = 1, an eigenvalue did not converge
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date June 2016
*
*> \ingroup auxOTHERcomputational
*
*> \par Contributors:
* ==================
*>
*> Jeff Rutter, Computer Science Division, University of California
*> at Berkeley, USA \n
*> Modified by Francoise Tisseur, University of Tennessee
*>
* =====================================================================
SUBROUTINE SLAED1( N, D, Q, LDQ, INDXQ, RHO, CUTPNT, WORK, IWORK,
$ INFO )
*
* -- LAPACK computational routine (version 3.7.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* June 2016
*
* .. Scalar Arguments ..
INTEGER CUTPNT, INFO, LDQ, N
REAL RHO
* ..
* .. Array Arguments ..
INTEGER INDXQ( * ), IWORK( * )
REAL D( * ), Q( LDQ, * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Local Scalars ..
INTEGER COLTYP, CPP1, I, IDLMDA, INDX, INDXC, INDXP,
$ IQ2, IS, IW, IZ, K, N1, N2
* ..
* .. External Subroutines ..
EXTERNAL SCOPY, SLAED2, SLAED3, SLAMRG, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
*
IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
INFO = -4
ELSE IF( MIN( 1, N / 2 ).GT.CUTPNT .OR. ( N / 2 ).LT.CUTPNT ) THEN
INFO = -7
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SLAED1', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
* The following values are integer pointers which indicate
* the portion of the workspace
* used by a particular array in SLAED2 and SLAED3.
*
IZ = 1
IDLMDA = IZ + N
IW = IDLMDA + N
IQ2 = IW + N
*
INDX = 1
INDXC = INDX + N
COLTYP = INDXC + N
INDXP = COLTYP + N
*
*
* Form the z-vector which consists of the last row of Q_1 and the
* first row of Q_2.
*
CALL SCOPY( CUTPNT, Q( CUTPNT, 1 ), LDQ, WORK( IZ ), 1 )
CPP1 = CUTPNT + 1
CALL SCOPY( N-CUTPNT, Q( CPP1, CPP1 ), LDQ, WORK( IZ+CUTPNT ), 1 )
*
* Deflate eigenvalues.
*
CALL SLAED2( K, N, CUTPNT, D, Q, LDQ, INDXQ, RHO, WORK( IZ ),
$ WORK( IDLMDA ), WORK( IW ), WORK( IQ2 ),
$ IWORK( INDX ), IWORK( INDXC ), IWORK( INDXP ),
$ IWORK( COLTYP ), INFO )
*
IF( INFO.NE.0 )
$ GO TO 20
*
* Solve Secular Equation.
*
IF( K.NE.0 ) THEN
IS = ( IWORK( COLTYP )+IWORK( COLTYP+1 ) )*CUTPNT +
$ ( IWORK( COLTYP+1 )+IWORK( COLTYP+2 ) )*( N-CUTPNT ) + IQ2
CALL SLAED3( K, N, CUTPNT, D, Q, LDQ, RHO, WORK( IDLMDA ),
$ WORK( IQ2 ), IWORK( INDXC ), IWORK( COLTYP ),
$ WORK( IW ), WORK( IS ), INFO )
IF( INFO.NE.0 )
$ GO TO 20
*
* Prepare the INDXQ sorting permutation.
*
N1 = K
N2 = N - K
CALL SLAMRG( N1, N2, D, 1, -1, INDXQ )
ELSE
DO 10 I = 1, N
INDXQ( I ) = I
10 CONTINUE
END IF
*
20 CONTINUE
RETURN
*
* End of SLAED1
*
END