*> \brief \b SORBDB4
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SORBDB4 + dependencies
*>
*> [TGZ]
*>
*> [ZIP]
*>
*> [TXT]
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE SORBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA, PHI,
* TAUP1, TAUP2, TAUQ1, PHANTOM, WORK, LWORK,
* INFO )
*
* .. Scalar Arguments ..
* INTEGER INFO, LWORK, M, P, Q, LDX11, LDX21
* ..
* .. Array Arguments ..
* REAL PHI(*), THETA(*)
* REAL PHANTOM(*), TAUP1(*), TAUP2(*), TAUQ1(*),
* $ WORK(*), X11(LDX11,*), X21(LDX21,*)
* ..
*
*
*> \par Purpose:
* =============
*>
*>\verbatim
*>
*> SORBDB4 simultaneously bidiagonalizes the blocks of a tall and skinny
*> matrix X with orthonomal columns:
*>
*> [ B11 ]
*> [ X11 ] [ P1 | ] [ 0 ]
*> [-----] = [---------] [-----] Q1**T .
*> [ X21 ] [ | P2 ] [ B21 ]
*> [ 0 ]
*>
*> X11 is P-by-Q, and X21 is (M-P)-by-Q. M-Q must be no larger than P,
*> M-P, or Q. Routines SORBDB1, SORBDB2, and SORBDB3 handle cases in
*> which M-Q is not the minimum dimension.
*>
*> The orthogonal matrices P1, P2, and Q1 are P-by-P, (M-P)-by-(M-P),
*> and (M-Q)-by-(M-Q), respectively. They are represented implicitly by
*> Householder vectors.
*>
*> B11 and B12 are (M-Q)-by-(M-Q) bidiagonal matrices represented
*> implicitly by angles THETA, PHI.
*>
*>\endverbatim
*
* Arguments:
* ==========
*
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows X11 plus the number of rows in X21.
*> \endverbatim
*>
*> \param[in] P
*> \verbatim
*> P is INTEGER
*> The number of rows in X11. 0 <= P <= M.
*> \endverbatim
*>
*> \param[in] Q
*> \verbatim
*> Q is INTEGER
*> The number of columns in X11 and X21. 0 <= Q <= M and
*> M-Q <= min(P,M-P,Q).
*> \endverbatim
*>
*> \param[in,out] X11
*> \verbatim
*> X11 is REAL array, dimension (LDX11,Q)
*> On entry, the top block of the matrix X to be reduced. On
*> exit, the columns of tril(X11) specify reflectors for P1 and
*> the rows of triu(X11,1) specify reflectors for Q1.
*> \endverbatim
*>
*> \param[in] LDX11
*> \verbatim
*> LDX11 is INTEGER
*> The leading dimension of X11. LDX11 >= P.
*> \endverbatim
*>
*> \param[in,out] X21
*> \verbatim
*> X21 is REAL array, dimension (LDX21,Q)
*> On entry, the bottom block of the matrix X to be reduced. On
*> exit, the columns of tril(X21) specify reflectors for P2.
*> \endverbatim
*>
*> \param[in] LDX21
*> \verbatim
*> LDX21 is INTEGER
*> The leading dimension of X21. LDX21 >= M-P.
*> \endverbatim
*>
*> \param[out] THETA
*> \verbatim
*> THETA is REAL array, dimension (Q)
*> The entries of the bidiagonal blocks B11, B21 are defined by
*> THETA and PHI. See Further Details.
*> \endverbatim
*>
*> \param[out] PHI
*> \verbatim
*> PHI is REAL array, dimension (Q-1)
*> The entries of the bidiagonal blocks B11, B21 are defined by
*> THETA and PHI. See Further Details.
*> \endverbatim
*>
*> \param[out] TAUP1
*> \verbatim
*> TAUP1 is REAL array, dimension (P)
*> The scalar factors of the elementary reflectors that define
*> P1.
*> \endverbatim
*>
*> \param[out] TAUP2
*> \verbatim
*> TAUP2 is REAL array, dimension (M-P)
*> The scalar factors of the elementary reflectors that define
*> P2.
*> \endverbatim
*>
*> \param[out] TAUQ1
*> \verbatim
*> TAUQ1 is REAL array, dimension (Q)
*> The scalar factors of the elementary reflectors that define
*> Q1.
*> \endverbatim
*>
*> \param[out] PHANTOM
*> \verbatim
*> PHANTOM is REAL array, dimension (M)
*> The routine computes an M-by-1 column vector Y that is
*> orthogonal to the columns of [ X11; X21 ]. PHANTOM(1:P) and
*> PHANTOM(P+1:M) contain Householder vectors for Y(1:P) and
*> Y(P+1:M), respectively.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is REAL array, dimension (LWORK)
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= M-Q.
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
*> message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit.
*> < 0: if INFO = -i, the i-th argument had an illegal value.
*> \endverbatim
*>
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date July 2012
*
*> \ingroup realOTHERcomputational
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> The upper-bidiagonal blocks B11, B21 are represented implicitly by
*> angles THETA(1), ..., THETA(Q) and PHI(1), ..., PHI(Q-1). Every entry
*> in each bidiagonal band is a product of a sine or cosine of a THETA
*> with a sine or cosine of a PHI. See [1] or SORCSD for details.
*>
*> P1, P2, and Q1 are represented as products of elementary reflectors.
*> See SORCSD2BY1 for details on generating P1, P2, and Q1 using SORGQR
*> and SORGLQ.
*> \endverbatim
*
*> \par References:
* ================
*>
*> [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
*> Algorithms, 50(1):33-65, 2009.
*>
* =====================================================================
SUBROUTINE SORBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA, PHI,
$ TAUP1, TAUP2, TAUQ1, PHANTOM, WORK, LWORK,
$ INFO )
*
* -- LAPACK computational routine (version 3.7.1) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* July 2012
*
* .. Scalar Arguments ..
INTEGER INFO, LWORK, M, P, Q, LDX11, LDX21
* ..
* .. Array Arguments ..
REAL PHI(*), THETA(*)
REAL PHANTOM(*), TAUP1(*), TAUP2(*), TAUQ1(*),
$ WORK(*), X11(LDX11,*), X21(LDX21,*)
* ..
*
* ====================================================================
*
* .. Parameters ..
REAL NEGONE, ONE, ZERO
PARAMETER ( NEGONE = -1.0E0, ONE = 1.0E0, ZERO = 0.0E0 )
* ..
* .. Local Scalars ..
REAL C, S
INTEGER CHILDINFO, I, ILARF, IORBDB5, J, LLARF,
$ LORBDB5, LWORKMIN, LWORKOPT
LOGICAL LQUERY
* ..
* .. External Subroutines ..
EXTERNAL SLARF, SLARFGP, SORBDB5, SROT, SSCAL, XERBLA
* ..
* .. External Functions ..
REAL SNRM2
EXTERNAL SNRM2
* ..
* .. Intrinsic Function ..
INTRINSIC ATAN2, COS, MAX, SIN, SQRT
* ..
* .. Executable Statements ..
*
* Test input arguments
*
INFO = 0
LQUERY = LWORK .EQ. -1
*
IF( M .LT. 0 ) THEN
INFO = -1
ELSE IF( P .LT. M-Q .OR. M-P .LT. M-Q ) THEN
INFO = -2
ELSE IF( Q .LT. M-Q .OR. Q .GT. M ) THEN
INFO = -3
ELSE IF( LDX11 .LT. MAX( 1, P ) ) THEN
INFO = -5
ELSE IF( LDX21 .LT. MAX( 1, M-P ) ) THEN
INFO = -7
END IF
*
* Compute workspace
*
IF( INFO .EQ. 0 ) THEN
ILARF = 2
LLARF = MAX( Q-1, P-1, M-P-1 )
IORBDB5 = 2
LORBDB5 = Q
LWORKOPT = ILARF + LLARF - 1
LWORKOPT = MAX( LWORKOPT, IORBDB5 + LORBDB5 - 1 )
LWORKMIN = LWORKOPT
WORK(1) = LWORKOPT
IF( LWORK .LT. LWORKMIN .AND. .NOT.LQUERY ) THEN
INFO = -14
END IF
END IF
IF( INFO .NE. 0 ) THEN
CALL XERBLA( 'SORBDB4', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Reduce columns 1, ..., M-Q of X11 and X21
*
DO I = 1, M-Q
*
IF( I .EQ. 1 ) THEN
DO J = 1, M
PHANTOM(J) = ZERO
END DO
CALL SORBDB5( P, M-P, Q, PHANTOM(1), 1, PHANTOM(P+1), 1,
$ X11, LDX11, X21, LDX21, WORK(IORBDB5),
$ LORBDB5, CHILDINFO )
CALL SSCAL( P, NEGONE, PHANTOM(1), 1 )
CALL SLARFGP( P, PHANTOM(1), PHANTOM(2), 1, TAUP1(1) )
CALL SLARFGP( M-P, PHANTOM(P+1), PHANTOM(P+2), 1, TAUP2(1) )
THETA(I) = ATAN2( PHANTOM(1), PHANTOM(P+1) )
C = COS( THETA(I) )
S = SIN( THETA(I) )
PHANTOM(1) = ONE
PHANTOM(P+1) = ONE
CALL SLARF( 'L', P, Q, PHANTOM(1), 1, TAUP1(1), X11, LDX11,
$ WORK(ILARF) )
CALL SLARF( 'L', M-P, Q, PHANTOM(P+1), 1, TAUP2(1), X21,
$ LDX21, WORK(ILARF) )
ELSE
CALL SORBDB5( P-I+1, M-P-I+1, Q-I+1, X11(I,I-1), 1,
$ X21(I,I-1), 1, X11(I,I), LDX11, X21(I,I),
$ LDX21, WORK(IORBDB5), LORBDB5, CHILDINFO )
CALL SSCAL( P-I+1, NEGONE, X11(I,I-1), 1 )
CALL SLARFGP( P-I+1, X11(I,I-1), X11(I+1,I-1), 1, TAUP1(I) )
CALL SLARFGP( M-P-I+1, X21(I,I-1), X21(I+1,I-1), 1,
$ TAUP2(I) )
THETA(I) = ATAN2( X11(I,I-1), X21(I,I-1) )
C = COS( THETA(I) )
S = SIN( THETA(I) )
X11(I,I-1) = ONE
X21(I,I-1) = ONE
CALL SLARF( 'L', P-I+1, Q-I+1, X11(I,I-1), 1, TAUP1(I),
$ X11(I,I), LDX11, WORK(ILARF) )
CALL SLARF( 'L', M-P-I+1, Q-I+1, X21(I,I-1), 1, TAUP2(I),
$ X21(I,I), LDX21, WORK(ILARF) )
END IF
*
CALL SROT( Q-I+1, X11(I,I), LDX11, X21(I,I), LDX21, S, -C )
CALL SLARFGP( Q-I+1, X21(I,I), X21(I,I+1), LDX21, TAUQ1(I) )
C = X21(I,I)
X21(I,I) = ONE
CALL SLARF( 'R', P-I, Q-I+1, X21(I,I), LDX21, TAUQ1(I),
$ X11(I+1,I), LDX11, WORK(ILARF) )
CALL SLARF( 'R', M-P-I, Q-I+1, X21(I,I), LDX21, TAUQ1(I),
$ X21(I+1,I), LDX21, WORK(ILARF) )
IF( I .LT. M-Q ) THEN
S = SQRT( SNRM2( P-I, X11(I+1,I), 1 )**2
$ + SNRM2( M-P-I, X21(I+1,I), 1 )**2 )
PHI(I) = ATAN2( S, C )
END IF
*
END DO
*
* Reduce the bottom-right portion of X11 to [ I 0 ]
*
DO I = M - Q + 1, P
CALL SLARFGP( Q-I+1, X11(I,I), X11(I,I+1), LDX11, TAUQ1(I) )
X11(I,I) = ONE
CALL SLARF( 'R', P-I, Q-I+1, X11(I,I), LDX11, TAUQ1(I),
$ X11(I+1,I), LDX11, WORK(ILARF) )
CALL SLARF( 'R', Q-P, Q-I+1, X11(I,I), LDX11, TAUQ1(I),
$ X21(M-Q+1,I), LDX21, WORK(ILARF) )
END DO
*
* Reduce the bottom-right portion of X21 to [ 0 I ]
*
DO I = P + 1, Q
CALL SLARFGP( Q-I+1, X21(M-Q+I-P,I), X21(M-Q+I-P,I+1), LDX21,
$ TAUQ1(I) )
X21(M-Q+I-P,I) = ONE
CALL SLARF( 'R', Q-I, Q-I+1, X21(M-Q+I-P,I), LDX21, TAUQ1(I),
$ X21(M-Q+I-P+1,I), LDX21, WORK(ILARF) )
END DO
*
RETURN
*
* End of SORBDB4
*
END