*> \brief ZHESV_AA_2STAGE computes the solution to system of linear equations A * X = B for HE matrices
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZHESV_AA_2STAGE + dependencies
*>
*> [TGZ]
*>
*> [ZIP]
*>
*> [TXT]
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE ZHESV_AA_2STAGE( UPLO, N, NRHS, A, LDA, TB, LTB,
* IPIV, IPIV2, B, LDB, WORK, LWORK,
* INFO )
*
* .. Scalar Arguments ..
* CHARACTER UPLO
* INTEGER N, NRHS, LDA, LTB, LDB, LWORK, INFO
* ..
* .. Array Arguments ..
* INTEGER IPIV( * ), IPIV2( * )
* COMPLEX*16 A( LDA, * ), TB( * ), B( LDB, *), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZHESV_AA_2STAGE computes the solution to a complex system of
*> linear equations
*> A * X = B,
*> where A is an N-by-N Hermitian matrix and X and B are N-by-NRHS
*> matrices.
*>
*> Aasen's 2-stage algorithm is used to factor A as
*> A = U**H * T * U, if UPLO = 'U', or
*> A = L * T * L**H, if UPLO = 'L',
*> where U (or L) is a product of permutation and unit upper (lower)
*> triangular matrices, and T is Hermitian and band. The matrix T is
*> then LU-factored with partial pivoting. The factored form of A
*> is then used to solve the system of equations A * X = B.
*>
*> This is the blocked version of the algorithm, calling Level 3 BLAS.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> = 'U': Upper triangle of A is stored;
*> = 'L': Lower triangle of A is stored.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*> NRHS is INTEGER
*> The number of right hand sides, i.e., the number of columns
*> of the matrix B. NRHS >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is COMPLEX*16 array, dimension (LDA,N)
*> On entry, the hermitian matrix A. If UPLO = 'U', the leading
*> N-by-N upper triangular part of A contains the upper
*> triangular part of the matrix A, and the strictly lower
*> triangular part of A is not referenced. If UPLO = 'L', the
*> leading N-by-N lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
*>
*> On exit, L is stored below (or above) the subdiaonal blocks,
*> when UPLO is 'L' (or 'U').
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[out] TB
*> \verbatim
*> TB is COMPLEX*16 array, dimension (LTB)
*> On exit, details of the LU factorization of the band matrix.
*> \endverbatim
*>
*> \param[in] LTB
*> \verbatim
*> LTB is INTEGER
*> The size of the array TB. LTB >= 4*N, internally
*> used to select NB such that LTB >= (3*NB+1)*N.
*>
*> If LTB = -1, then a workspace query is assumed; the
*> routine only calculates the optimal size of LTB,
*> returns this value as the first entry of TB, and
*> no error message related to LTB is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] IPIV
*> \verbatim
*> IPIV is INTEGER array, dimension (N)
*> On exit, it contains the details of the interchanges, i.e.,
*> the row and column k of A were interchanged with the
*> row and column IPIV(k).
*> \endverbatim
*>
*> \param[out] IPIV2
*> \verbatim
*> IPIV2 is INTEGER array, dimension (N)
*> On exit, it contains the details of the interchanges, i.e.,
*> the row and column k of T were interchanged with the
*> row and column IPIV(k).
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*> B is COMPLEX*16 array, dimension (LDB,NRHS)
*> On entry, the right hand side matrix B.
*> On exit, the solution matrix X.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >= max(1,N).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX*16 workspace of size LWORK
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The size of WORK. LWORK >= N, internally used to select NB
*> such that LWORK >= N*NB.
*>
*> If LWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal size of the WORK array,
*> returns this value as the first entry of the WORK array, and
*> no error message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value.
*> > 0: if INFO = i, band LU factorization failed on i-th column
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2017
*
*> \ingroup complex16HEsolve
*
* =====================================================================
SUBROUTINE ZHESV_AA_2STAGE( UPLO, N, NRHS, A, LDA, TB, LTB,
$ IPIV, IPIV2, B, LDB, WORK, LWORK,
$ INFO )
*
* -- LAPACK driver routine (version 3.8.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2017
*
IMPLICIT NONE
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER N, NRHS, LDA, LDB, LTB, LWORK, INFO
* ..
* .. Array Arguments ..
INTEGER IPIV( * ), IPIV2( * )
COMPLEX*16 A( LDA, * ), B( LDB, * ), TB( * ), WORK( * )
* ..
*
* =====================================================================
* .. Parameters ..
COMPLEX*16 ZERO, ONE
PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ),
$ ONE = ( 1.0D+0, 0.0D+0 ) )
*
* .. Local Scalars ..
LOGICAL UPPER, TQUERY, WQUERY
INTEGER LWKOPT
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ILAENV
EXTERNAL LSAME, ILAENV
* ..
* .. External Subroutines ..
EXTERNAL XERBLA, ZHETRF_AA_2STAGE, ZHETRS_AA_2STAGE
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
UPPER = LSAME( UPLO, 'U' )
WQUERY = ( LWORK.EQ.-1 )
TQUERY = ( LTB.EQ.-1 )
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( NRHS.LT.0 ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -5
ELSE IF( LTB.LT.( 4*N ) .AND. .NOT.TQUERY ) THEN
INFO = -7
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -11
ELSE IF( LWORK.LT.N .AND. .NOT.WQUERY ) THEN
INFO = -13
END IF
*
IF( INFO.EQ.0 ) THEN
CALL ZHETRF_AA_2STAGE( UPLO, N, A, LDA, TB, -1, IPIV,
$ IPIV2, WORK, -1, INFO )
LWKOPT = INT( WORK(1) )
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZHESV_AA_2STAGE', -INFO )
RETURN
ELSE IF( WQUERY .OR. TQUERY ) THEN
RETURN
END IF
*
* Compute the factorization A = U**H*T*U or A = L*T*L**H.
*
CALL ZHETRF_AA_2STAGE( UPLO, N, A, LDA, TB, LTB, IPIV, IPIV2,
$ WORK, LWORK, INFO )
IF( INFO.EQ.0 ) THEN
*
* Solve the system A*X = B, overwriting B with X.
*
CALL ZHETRS_AA_2STAGE( UPLO, N, NRHS, A, LDA, TB, LTB, IPIV,
$ IPIV2, B, LDB, INFO )
*
END IF
*
WORK( 1 ) = LWKOPT
*
RETURN
*
* End of ZHESV_AA_2STAGE
*
END