*> \brief \b ZLANSY returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex symmetric matrix.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZLANSY + dependencies
*>
*> [TGZ]
*>
*> [ZIP]
*>
*> [TXT]
*> \endhtmlonly
*
* Definition:
* ===========
*
* DOUBLE PRECISION FUNCTION ZLANSY( NORM, UPLO, N, A, LDA, WORK )
*
* .. Scalar Arguments ..
* CHARACTER NORM, UPLO
* INTEGER LDA, N
* ..
* .. Array Arguments ..
* DOUBLE PRECISION WORK( * )
* COMPLEX*16 A( LDA, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZLANSY returns the value of the one norm, or the Frobenius norm, or
*> the infinity norm, or the element of largest absolute value of a
*> complex symmetric matrix A.
*> \endverbatim
*>
*> \return ZLANSY
*> \verbatim
*>
*> ZLANSY = ( max(abs(A(i,j))), NORM = 'M' or 'm'
*> (
*> ( norm1(A), NORM = '1', 'O' or 'o'
*> (
*> ( normI(A), NORM = 'I' or 'i'
*> (
*> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
*>
*> where norm1 denotes the one norm of a matrix (maximum column sum),
*> normI denotes the infinity norm of a matrix (maximum row sum) and
*> normF denotes the Frobenius norm of a matrix (square root of sum of
*> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] NORM
*> \verbatim
*> NORM is CHARACTER*1
*> Specifies the value to be returned in ZLANSY as described
*> above.
*> \endverbatim
*>
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> Specifies whether the upper or lower triangular part of the
*> symmetric matrix A is to be referenced.
*> = 'U': Upper triangular part of A is referenced
*> = 'L': Lower triangular part of A is referenced
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0. When N = 0, ZLANSY is
*> set to zero.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX*16 array, dimension (LDA,N)
*> The symmetric matrix A. If UPLO = 'U', the leading n by n
*> upper triangular part of A contains the upper triangular part
*> of the matrix A, and the strictly lower triangular part of A
*> is not referenced. If UPLO = 'L', the leading n by n lower
*> triangular part of A contains the lower triangular part of
*> the matrix A, and the strictly upper triangular part of A is
*> not referenced.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(N,1).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
*> where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
*> WORK is not referenced.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup complex16SYauxiliary
*
* =====================================================================
DOUBLE PRECISION FUNCTION ZLANSY( NORM, UPLO, N, A, LDA, WORK )
*
* -- LAPACK auxiliary routine (version 3.7.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
IMPLICIT NONE
* .. Scalar Arguments ..
CHARACTER NORM, UPLO
INTEGER LDA, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION WORK( * )
COMPLEX*16 A( LDA, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
* ..
* .. Local Scalars ..
INTEGER I, J
DOUBLE PRECISION ABSA, SUM, VALUE
* ..
* .. Local Arrays ..
DOUBLE PRECISION SSQ( 2 ), COLSSQ( 2 )
* ..
* .. External Functions ..
LOGICAL LSAME, DISNAN
EXTERNAL LSAME, DISNAN
* ..
* .. External Subroutines ..
EXTERNAL ZLASSQ, DCOMBSSQ
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, SQRT
* ..
* .. Executable Statements ..
*
IF( N.EQ.0 ) THEN
VALUE = ZERO
ELSE IF( LSAME( NORM, 'M' ) ) THEN
*
* Find max(abs(A(i,j))).
*
VALUE = ZERO
IF( LSAME( UPLO, 'U' ) ) THEN
DO 20 J = 1, N
DO 10 I = 1, J
SUM = ABS( A( I, J ) )
IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
10 CONTINUE
20 CONTINUE
ELSE
DO 40 J = 1, N
DO 30 I = J, N
SUM = ABS( A( I, J ) )
IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
30 CONTINUE
40 CONTINUE
END IF
ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR.
$ ( NORM.EQ.'1' ) ) THEN
*
* Find normI(A) ( = norm1(A), since A is symmetric).
*
VALUE = ZERO
IF( LSAME( UPLO, 'U' ) ) THEN
DO 60 J = 1, N
SUM = ZERO
DO 50 I = 1, J - 1
ABSA = ABS( A( I, J ) )
SUM = SUM + ABSA
WORK( I ) = WORK( I ) + ABSA
50 CONTINUE
WORK( J ) = SUM + ABS( A( J, J ) )
60 CONTINUE
DO 70 I = 1, N
SUM = WORK( I )
IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
70 CONTINUE
ELSE
DO 80 I = 1, N
WORK( I ) = ZERO
80 CONTINUE
DO 100 J = 1, N
SUM = WORK( J ) + ABS( A( J, J ) )
DO 90 I = J + 1, N
ABSA = ABS( A( I, J ) )
SUM = SUM + ABSA
WORK( I ) = WORK( I ) + ABSA
90 CONTINUE
IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
100 CONTINUE
END IF
ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
*
* Find normF(A).
* SSQ(1) is scale
* SSQ(2) is sum-of-squares
* For better accuracy, sum each column separately.
*
SSQ( 1 ) = ZERO
SSQ( 2 ) = ONE
*
* Sum off-diagonals
*
IF( LSAME( UPLO, 'U' ) ) THEN
DO 110 J = 2, N
COLSSQ( 1 ) = ZERO
COLSSQ( 2 ) = ONE
CALL ZLASSQ( J-1, A( 1, J ), 1, COLSSQ(1), COLSSQ(2) )
CALL DCOMBSSQ( SSQ, COLSSQ )
110 CONTINUE
ELSE
DO 120 J = 1, N - 1
COLSSQ( 1 ) = ZERO
COLSSQ( 2 ) = ONE
CALL ZLASSQ( N-J, A( J+1, J ), 1, COLSSQ(1), COLSSQ(2) )
CALL DCOMBSSQ( SSQ, COLSSQ )
120 CONTINUE
END IF
SSQ( 2 ) = 2*SSQ( 2 )
*
* Sum diagonal
*
COLSSQ( 1 ) = ZERO
COLSSQ( 2 ) = ONE
CALL ZLASSQ( N, A, LDA+1, COLSSQ( 1 ), COLSSQ( 2 ) )
CALL DCOMBSSQ( SSQ, COLSSQ )
VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) )
END IF
*
ZLANSY = VALUE
RETURN
*
* End of ZLANSY
*
END