*> \brief \b ZLATME * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE ZLATME( N, DIST, ISEED, D, MODE, COND, DMAX, * RSIGN, * UPPER, SIM, DS, MODES, CONDS, KL, KU, ANORM, * A, * LDA, WORK, INFO ) * * .. Scalar Arguments .. * CHARACTER DIST, RSIGN, SIM, UPPER * INTEGER INFO, KL, KU, LDA, MODE, MODES, N * DOUBLE PRECISION ANORM, COND, CONDS * COMPLEX*16 DMAX * .. * .. Array Arguments .. * INTEGER ISEED( 4 ) * DOUBLE PRECISION DS( * ) * COMPLEX*16 A( LDA, * ), D( * ), WORK( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ZLATME generates random non-symmetric square matrices with *> specified eigenvalues for testing LAPACK programs. *> *> ZLATME operates by applying the following sequence of *> operations: *> *> 1. Set the diagonal to D, where D may be input or *> computed according to MODE, COND, DMAX, and RSIGN *> as described below. *> *> 2. If UPPER='T', the upper triangle of A is set to random values *> out of distribution DIST. *> *> 3. If SIM='T', A is multiplied on the left by a random matrix *> X, whose singular values are specified by DS, MODES, and *> CONDS, and on the right by X inverse. *> *> 4. If KL < N-1, the lower bandwidth is reduced to KL using *> Householder transformations. If KU < N-1, the upper *> bandwidth is reduced to KU. *> *> 5. If ANORM is not negative, the matrix is scaled to have *> maximum-element-norm ANORM. *> *> (Note: since the matrix cannot be reduced beyond Hessenberg form, *> no packing options are available.) *> \endverbatim * * Arguments: * ========== * *> \param[in] N *> \verbatim *> N is INTEGER *> The number of columns (or rows) of A. Not modified. *> \endverbatim *> *> \param[in] DIST *> \verbatim *> DIST is CHARACTER*1 *> On entry, DIST specifies the type of distribution to be used *> to generate the random eigen-/singular values, and on the *> upper triangle (see UPPER). *> 'U' => UNIFORM( 0, 1 ) ( 'U' for uniform ) *> 'S' => UNIFORM( -1, 1 ) ( 'S' for symmetric ) *> 'N' => NORMAL( 0, 1 ) ( 'N' for normal ) *> 'D' => uniform on the complex disc |z| < 1. *> Not modified. *> \endverbatim *> *> \param[in,out] ISEED *> \verbatim *> ISEED is INTEGER array, dimension ( 4 ) *> On entry ISEED specifies the seed of the random number *> generator. They should lie between 0 and 4095 inclusive, *> and ISEED(4) should be odd. The random number generator *> uses a linear congruential sequence limited to small *> integers, and so should produce machine independent *> random numbers. The values of ISEED are changed on *> exit, and can be used in the next call to ZLATME *> to continue the same random number sequence. *> Changed on exit. *> \endverbatim *> *> \param[in,out] D *> \verbatim *> D is COMPLEX*16 array, dimension ( N ) *> This array is used to specify the eigenvalues of A. If *> MODE=0, then D is assumed to contain the eigenvalues *> otherwise they will be computed according to MODE, COND, *> DMAX, and RSIGN and placed in D. *> Modified if MODE is nonzero. *> \endverbatim *> *> \param[in] MODE *> \verbatim *> MODE is INTEGER *> On entry this describes how the eigenvalues are to *> be specified: *> MODE = 0 means use D as input *> MODE = 1 sets D(1)=1 and D(2:N)=1.0/COND *> MODE = 2 sets D(1:N-1)=1 and D(N)=1.0/COND *> MODE = 3 sets D(I)=COND**(-(I-1)/(N-1)) *> MODE = 4 sets D(i)=1 - (i-1)/(N-1)*(1 - 1/COND) *> MODE = 5 sets D to random numbers in the range *> ( 1/COND , 1 ) such that their logarithms *> are uniformly distributed. *> MODE = 6 set D to random numbers from same distribution *> as the rest of the matrix. *> MODE < 0 has the same meaning as ABS(MODE), except that *> the order of the elements of D is reversed. *> Thus if MODE is between 1 and 4, D has entries ranging *> from 1 to 1/COND, if between -1 and -4, D has entries *> ranging from 1/COND to 1, *> Not modified. *> \endverbatim *> *> \param[in] COND *> \verbatim *> COND is DOUBLE PRECISION *> On entry, this is used as described under MODE above. *> If used, it must be >= 1. Not modified. *> \endverbatim *> *> \param[in] DMAX *> \verbatim *> DMAX is COMPLEX*16 *> If MODE is neither -6, 0 nor 6, the contents of D, as *> computed according to MODE and COND, will be scaled by *> DMAX / max(abs(D(i))). Note that DMAX need not be *> positive or real: if DMAX is negative or complex (or zero), *> D will be scaled by a negative or complex number (or zero). *> If RSIGN='F' then the largest (absolute) eigenvalue will be *> equal to DMAX. *> Not modified. *> \endverbatim *> *> \param[in] RSIGN *> \verbatim *> RSIGN is CHARACTER*1 *> If MODE is not 0, 6, or -6, and RSIGN='T', then the *> elements of D, as computed according to MODE and COND, will *> be multiplied by a random complex number from the unit *> circle |z| = 1. If RSIGN='F', they will not be. RSIGN may *> only have the values 'T' or 'F'. *> Not modified. *> \endverbatim *> *> \param[in] UPPER *> \verbatim *> UPPER is CHARACTER*1 *> If UPPER='T', then the elements of A above the diagonal *> will be set to random numbers out of DIST. If UPPER='F', *> they will not. UPPER may only have the values 'T' or 'F'. *> Not modified. *> \endverbatim *> *> \param[in] SIM *> \verbatim *> SIM is CHARACTER*1 *> If SIM='T', then A will be operated on by a "similarity *> transform", i.e., multiplied on the left by a matrix X and *> on the right by X inverse. X = U S V, where U and V are *> random unitary matrices and S is a (diagonal) matrix of *> singular values specified by DS, MODES, and CONDS. If *> SIM='F', then A will not be transformed. *> Not modified. *> \endverbatim *> *> \param[in,out] DS *> \verbatim *> DS is DOUBLE PRECISION array, dimension ( N ) *> This array is used to specify the singular values of X, *> in the same way that D specifies the eigenvalues of A. *> If MODE=0, the DS contains the singular values, which *> may not be zero. *> Modified if MODE is nonzero. *> \endverbatim *> *> \param[in] MODES *> \verbatim *> MODES is INTEGER *> \endverbatim *> *> \param[in] CONDS *> \verbatim *> CONDS is DOUBLE PRECISION *> Similar to MODE and COND, but for specifying the diagonal *> of S. MODES=-6 and +6 are not allowed (since they would *> result in randomly ill-conditioned eigenvalues.) *> \endverbatim *> *> \param[in] KL *> \verbatim *> KL is INTEGER *> This specifies the lower bandwidth of the matrix. KL=1 *> specifies upper Hessenberg form. If KL is at least N-1, *> then A will have full lower bandwidth. *> Not modified. *> \endverbatim *> *> \param[in] KU *> \verbatim *> KU is INTEGER *> This specifies the upper bandwidth of the matrix. KU=1 *> specifies lower Hessenberg form. If KU is at least N-1, *> then A will have full upper bandwidth; if KU and KL *> are both at least N-1, then A will be dense. Only one of *> KU and KL may be less than N-1. *> Not modified. *> \endverbatim *> *> \param[in] ANORM *> \verbatim *> ANORM is DOUBLE PRECISION *> If ANORM is not negative, then A will be scaled by a non- *> negative real number to make the maximum-element-norm of A *> to be ANORM. *> Not modified. *> \endverbatim *> *> \param[out] A *> \verbatim *> A is COMPLEX*16 array, dimension ( LDA, N ) *> On exit A is the desired test matrix. *> Modified. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> LDA specifies the first dimension of A as declared in the *> calling program. LDA must be at least M. *> Not modified. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX*16 array, dimension ( 3*N ) *> Workspace. *> Modified. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> Error code. On exit, INFO will be set to one of the *> following values: *> 0 => normal return *> -1 => N negative *> -2 => DIST illegal string *> -5 => MODE not in range -6 to 6 *> -6 => COND less than 1.0, and MODE neither -6, 0 nor 6 *> -9 => RSIGN is not 'T' or 'F' *> -10 => UPPER is not 'T' or 'F' *> -11 => SIM is not 'T' or 'F' *> -12 => MODES=0 and DS has a zero singular value. *> -13 => MODES is not in the range -5 to 5. *> -14 => MODES is nonzero and CONDS is less than 1. *> -15 => KL is less than 1. *> -16 => KU is less than 1, or KL and KU are both less than *> N-1. *> -19 => LDA is less than M. *> 1 => Error return from ZLATM1 (computing D) *> 2 => Cannot scale to DMAX (max. eigenvalue is 0) *> 3 => Error return from DLATM1 (computing DS) *> 4 => Error return from ZLARGE *> 5 => Zero singular value from DLATM1. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date December 2016 * *> \ingroup complex16_matgen * * ===================================================================== SUBROUTINE ZLATME( N, DIST, ISEED, D, MODE, COND, DMAX, $ RSIGN, $ UPPER, SIM, DS, MODES, CONDS, KL, KU, ANORM, $ A, $ LDA, WORK, INFO ) * * -- LAPACK computational routine (version 3.7.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * December 2016 * * .. Scalar Arguments .. CHARACTER DIST, RSIGN, SIM, UPPER INTEGER INFO, KL, KU, LDA, MODE, MODES, N DOUBLE PRECISION ANORM, COND, CONDS COMPLEX*16 DMAX * .. * .. Array Arguments .. INTEGER ISEED( 4 ) DOUBLE PRECISION DS( * ) COMPLEX*16 A( LDA, * ), D( * ), WORK( * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO PARAMETER ( ZERO = 0.0D+0 ) DOUBLE PRECISION ONE PARAMETER ( ONE = 1.0D+0 ) COMPLEX*16 CZERO PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ) ) COMPLEX*16 CONE PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ) ) * .. * .. Local Scalars .. LOGICAL BADS INTEGER I, IC, ICOLS, IDIST, IINFO, IR, IROWS, IRSIGN, $ ISIM, IUPPER, J, JC, JCR DOUBLE PRECISION RALPHA, TEMP COMPLEX*16 ALPHA, TAU, XNORMS * .. * .. Local Arrays .. DOUBLE PRECISION TEMPA( 1 ) * .. * .. External Functions .. LOGICAL LSAME DOUBLE PRECISION ZLANGE COMPLEX*16 ZLARND EXTERNAL LSAME, ZLANGE, ZLARND * .. * .. External Subroutines .. EXTERNAL DLATM1, XERBLA, ZCOPY, ZDSCAL, ZGEMV, ZGERC, $ ZLACGV, ZLARFG, ZLARGE, ZLARNV, ZLASET, ZLATM1, $ ZSCAL * .. * .. Intrinsic Functions .. INTRINSIC ABS, DCONJG, MAX, MOD * .. * .. Executable Statements .. * * 1) Decode and Test the input parameters. * Initialize flags & seed. * INFO = 0 * * Quick return if possible * IF( N.EQ.0 ) $ RETURN * * Decode DIST * IF( LSAME( DIST, 'U' ) ) THEN IDIST = 1 ELSE IF( LSAME( DIST, 'S' ) ) THEN IDIST = 2 ELSE IF( LSAME( DIST, 'N' ) ) THEN IDIST = 3 ELSE IF( LSAME( DIST, 'D' ) ) THEN IDIST = 4 ELSE IDIST = -1 END IF * * Decode RSIGN * IF( LSAME( RSIGN, 'T' ) ) THEN IRSIGN = 1 ELSE IF( LSAME( RSIGN, 'F' ) ) THEN IRSIGN = 0 ELSE IRSIGN = -1 END IF * * Decode UPPER * IF( LSAME( UPPER, 'T' ) ) THEN IUPPER = 1 ELSE IF( LSAME( UPPER, 'F' ) ) THEN IUPPER = 0 ELSE IUPPER = -1 END IF * * Decode SIM * IF( LSAME( SIM, 'T' ) ) THEN ISIM = 1 ELSE IF( LSAME( SIM, 'F' ) ) THEN ISIM = 0 ELSE ISIM = -1 END IF * * Check DS, if MODES=0 and ISIM=1 * BADS = .FALSE. IF( MODES.EQ.0 .AND. ISIM.EQ.1 ) THEN DO 10 J = 1, N IF( DS( J ).EQ.ZERO ) $ BADS = .TRUE. 10 CONTINUE END IF * * Set INFO if an error * IF( N.LT.0 ) THEN INFO = -1 ELSE IF( IDIST.EQ.-1 ) THEN INFO = -2 ELSE IF( ABS( MODE ).GT.6 ) THEN INFO = -5 ELSE IF( ( MODE.NE.0 .AND. ABS( MODE ).NE.6 ) .AND. COND.LT.ONE ) $ THEN INFO = -6 ELSE IF( IRSIGN.EQ.-1 ) THEN INFO = -9 ELSE IF( IUPPER.EQ.-1 ) THEN INFO = -10 ELSE IF( ISIM.EQ.-1 ) THEN INFO = -11 ELSE IF( BADS ) THEN INFO = -12 ELSE IF( ISIM.EQ.1 .AND. ABS( MODES ).GT.5 ) THEN INFO = -13 ELSE IF( ISIM.EQ.1 .AND. MODES.NE.0 .AND. CONDS.LT.ONE ) THEN INFO = -14 ELSE IF( KL.LT.1 ) THEN INFO = -15 ELSE IF( KU.LT.1 .OR. ( KU.LT.N-1 .AND. KL.LT.N-1 ) ) THEN INFO = -16 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -19 END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZLATME', -INFO ) RETURN END IF * * Initialize random number generator * DO 20 I = 1, 4 ISEED( I ) = MOD( ABS( ISEED( I ) ), 4096 ) 20 CONTINUE * IF( MOD( ISEED( 4 ), 2 ).NE.1 ) $ ISEED( 4 ) = ISEED( 4 ) + 1 * * 2) Set up diagonal of A * * Compute D according to COND and MODE * CALL ZLATM1( MODE, COND, IRSIGN, IDIST, ISEED, D, N, IINFO ) IF( IINFO.NE.0 ) THEN INFO = 1 RETURN END IF IF( MODE.NE.0 .AND. ABS( MODE ).NE.6 ) THEN * * Scale by DMAX * TEMP = ABS( D( 1 ) ) DO 30 I = 2, N TEMP = MAX( TEMP, ABS( D( I ) ) ) 30 CONTINUE * IF( TEMP.GT.ZERO ) THEN ALPHA = DMAX / TEMP ELSE INFO = 2 RETURN END IF * CALL ZSCAL( N, ALPHA, D, 1 ) * END IF * CALL ZLASET( 'Full', N, N, CZERO, CZERO, A, LDA ) CALL ZCOPY( N, D, 1, A, LDA+1 ) * * 3) If UPPER='T', set upper triangle of A to random numbers. * IF( IUPPER.NE.0 ) THEN DO 40 JC = 2, N CALL ZLARNV( IDIST, ISEED, JC-1, A( 1, JC ) ) 40 CONTINUE END IF * * 4) If SIM='T', apply similarity transformation. * * -1 * Transform is X A X , where X = U S V, thus * * it is U S V A V' (1/S) U' * IF( ISIM.NE.0 ) THEN * * Compute S (singular values of the eigenvector matrix) * according to CONDS and MODES * CALL DLATM1( MODES, CONDS, 0, 0, ISEED, DS, N, IINFO ) IF( IINFO.NE.0 ) THEN INFO = 3 RETURN END IF * * Multiply by V and V' * CALL ZLARGE( N, A, LDA, ISEED, WORK, IINFO ) IF( IINFO.NE.0 ) THEN INFO = 4 RETURN END IF * * Multiply by S and (1/S) * DO 50 J = 1, N CALL ZDSCAL( N, DS( J ), A( J, 1 ), LDA ) IF( DS( J ).NE.ZERO ) THEN CALL ZDSCAL( N, ONE / DS( J ), A( 1, J ), 1 ) ELSE INFO = 5 RETURN END IF 50 CONTINUE * * Multiply by U and U' * CALL ZLARGE( N, A, LDA, ISEED, WORK, IINFO ) IF( IINFO.NE.0 ) THEN INFO = 4 RETURN END IF END IF * * 5) Reduce the bandwidth. * IF( KL.LT.N-1 ) THEN * * Reduce bandwidth -- kill column * DO 60 JCR = KL + 1, N - 1 IC = JCR - KL IROWS = N + 1 - JCR ICOLS = N + KL - JCR * CALL ZCOPY( IROWS, A( JCR, IC ), 1, WORK, 1 ) XNORMS = WORK( 1 ) CALL ZLARFG( IROWS, XNORMS, WORK( 2 ), 1, TAU ) TAU = DCONJG( TAU ) WORK( 1 ) = CONE ALPHA = ZLARND( 5, ISEED ) * CALL ZGEMV( 'C', IROWS, ICOLS, CONE, A( JCR, IC+1 ), LDA, $ WORK, 1, CZERO, WORK( IROWS+1 ), 1 ) CALL ZGERC( IROWS, ICOLS, -TAU, WORK, 1, WORK( IROWS+1 ), 1, $ A( JCR, IC+1 ), LDA ) * CALL ZGEMV( 'N', N, IROWS, CONE, A( 1, JCR ), LDA, WORK, 1, $ CZERO, WORK( IROWS+1 ), 1 ) CALL ZGERC( N, IROWS, -DCONJG( TAU ), WORK( IROWS+1 ), 1, $ WORK, 1, A( 1, JCR ), LDA ) * A( JCR, IC ) = XNORMS CALL ZLASET( 'Full', IROWS-1, 1, CZERO, CZERO, $ A( JCR+1, IC ), LDA ) * CALL ZSCAL( ICOLS+1, ALPHA, A( JCR, IC ), LDA ) CALL ZSCAL( N, DCONJG( ALPHA ), A( 1, JCR ), 1 ) 60 CONTINUE ELSE IF( KU.LT.N-1 ) THEN * * Reduce upper bandwidth -- kill a row at a time. * DO 70 JCR = KU + 1, N - 1 IR = JCR - KU IROWS = N + KU - JCR ICOLS = N + 1 - JCR * CALL ZCOPY( ICOLS, A( IR, JCR ), LDA, WORK, 1 ) XNORMS = WORK( 1 ) CALL ZLARFG( ICOLS, XNORMS, WORK( 2 ), 1, TAU ) TAU = DCONJG( TAU ) WORK( 1 ) = CONE CALL ZLACGV( ICOLS-1, WORK( 2 ), 1 ) ALPHA = ZLARND( 5, ISEED ) * CALL ZGEMV( 'N', IROWS, ICOLS, CONE, A( IR+1, JCR ), LDA, $ WORK, 1, CZERO, WORK( ICOLS+1 ), 1 ) CALL ZGERC( IROWS, ICOLS, -TAU, WORK( ICOLS+1 ), 1, WORK, 1, $ A( IR+1, JCR ), LDA ) * CALL ZGEMV( 'C', ICOLS, N, CONE, A( JCR, 1 ), LDA, WORK, 1, $ CZERO, WORK( ICOLS+1 ), 1 ) CALL ZGERC( ICOLS, N, -DCONJG( TAU ), WORK, 1, $ WORK( ICOLS+1 ), 1, A( JCR, 1 ), LDA ) * A( IR, JCR ) = XNORMS CALL ZLASET( 'Full', 1, ICOLS-1, CZERO, CZERO, $ A( IR, JCR+1 ), LDA ) * CALL ZSCAL( IROWS+1, ALPHA, A( IR, JCR ), 1 ) CALL ZSCAL( N, DCONJG( ALPHA ), A( JCR, 1 ), LDA ) 70 CONTINUE END IF * * Scale the matrix to have norm ANORM * IF( ANORM.GE.ZERO ) THEN TEMP = ZLANGE( 'M', N, N, A, LDA, TEMPA ) IF( TEMP.GT.ZERO ) THEN RALPHA = ANORM / TEMP DO 80 J = 1, N CALL ZDSCAL( N, RALPHA, A( 1, J ), 1 ) 80 CONTINUE END IF END IF * RETURN * * End of ZLATME * END