C arm/neon/umac-nh-n.asm ifelse(< Copyright (C) 2013 Niels Möller This file is part of GNU Nettle. GNU Nettle is free software: you can redistribute it and/or modify it under the terms of either: * the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. or * the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. or both in parallel, as here. GNU Nettle is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received copies of the GNU General Public License and the GNU Lesser General Public License along with this program. If not, see http://www.gnu.org/licenses/. >) .file "umac-nh.asm" .fpu neon define(, ) define(, ) define(, ) define(, ) define(, ) define(, ) define(, ) define(, ) define(, ) C Accumulates for the first two operations. define(, ) define(, ) C Used for 3 and 4 iterations. define(, ) define(, ) define(, ) define(, ) define(, ) define(, ) define(, ) define(, ) define(, ) define(, ) C FIXME: Try permuting subkeys using vld4, vzip or similar. .text .align 3 PROLOGUE(_nettle_umac_nh_n) ldr MSG, [sp] str lr, [sp, #-4]! C Setup for 64-bit aligned reads ands SHIFT, MSG, #7 and MSG, MSG, #-8 vld1.8 {DM}, [MSG :64] addne MSG, MSG, #8 addeq SHIFT, SHIFT, #8 C FIXME: Combine as rsb ? lsl SHIFT, SHIFT, #3 neg SHIFT, SHIFT C Right shift in QRIGHT (both halves) vmov.i32 D0REG(QRIGHT)[0], SHIFT vmov.32 D1REG(QRIGHT), D0REG(QRIGHT) add SHIFT, SHIFT, #64 vmov.i32 D0REG(QLEFT)[0], SHIFT vmov.32 D1REG(QLEFT), D0REG(QLEFT) cmp r1, #3 vmov.i64 QY0, #0 vshl.u64 DM, DM, D0REG(QRIGHT) bcc .Lnh2 beq .Lnh3 .Lnh4: C Permute key words, so we in each iteration have them in order C C P0: [0, 4,1, 5] P1: [ 2, 6, 3, 7] P2: [ 4, 8, 5, 9] P3: [ 6,10, 7,11] C P4: [8,12,9,13] P5: [10,14,11,15] P6: [12,16,13,17] P7: [14,18,15,19] C C Also arrange the message words, so we get them as C M0: [0,0,1,1] M1: [ 2, 2, 3, 3] M2: [ 4, 4, 5, 5] M3: [ 6, 6, 7, 7] C M4: [8,8,9,9] M5: [10,10,11,11] M6: [12,12,13,13] M7: [14,14,15,15] C C Then, accumulate Y0 (first two "iters") using C C Y0 += (M0+P0) * (M2+P2) + (M1+P1) * (M3+P3) C Y1 += (M0+P4) * (M2+P6) + (M1+P5) * (M3+P7) C C Next iteration is then C C Y0 += (M4+P4) * (M6+P6) + (M5+P5) * (M7 + P7) C Y1 += (M4+P6) * (M6+P8) + (M5+P7) * (M7 + P11) C C So we can reuse P4, P5, P6, P7 from the previous iteration. C How to for in registers? We need 4 Q regs for P0-P3, and one C more for the last read key. We need at least two regiters C for the message (QA and QB, more if we want to expand only C once). For the Y0 update, we can let the factors overwrite C P0-P3, and for the Y1 update, we can overwrite M0-M3. vpush {q4,q5,q6} vld1.32 {QK0,QK1}, [KEY]! vld1.32 {QK2}, [KEY]! vmov QT0, QK1 vmov QT1, QK2 C Permute keys. QK2 us untouched, permuted subkeys put in QK0,QK1,QT0,QT1 vtrn.32 QK0, QK1 C Gives us [0, 4, 2, 6] and [1, 5, 3, 7] vswp D1REG(QK0), D0REG(QK1) C Gives us [0, 4, 1, 5] and [2, 6, 3, 7] vtrn.32 QT0, QT1 C Gives us [4,8,6,10] and [5 ,9,7,11] vswp D1REG(QT0), D0REG(QT1) C Gives us [4,8,5, 9] and [6,10,7,11] vmov.i64 QY1, #0 .Loop4: C Set m[i] <-- m[i-1] >> RSHIFT + m[i] << LSHIFT vld1.8 {QA, QB}, [MSG :64]! vshl.u64 QC, QA, QRIGHT vshl.u64 QD, QB, QRIGHT vshl.u64 QA, QA, QLEFT vshl.u64 QB, QB, QLEFT veor D0REG(QA), D0REG(QA), DM veor D1REG(QA), D1REG(QA), D0REG(QC) veor D0REG(QB), D0REG(QB), D1REG(QC) veor D1REG(QB), D1REG(QB), D0REG(QD) vmov DM, D1REG(QD) C Explode message (too bad there's no vadd with scalar) vdup.32 D1REG(QD), D1REG(QB)[1] vdup.32 D0REG(QD), D1REG(QB)[0] vdup.32 D1REG(QC), D0REG(QB)[1] vdup.32 D0REG(QC), D0REG(QB)[0] vdup.32 D1REG(QB), D1REG(QA)[1] vdup.32 D0REG(QB), D1REG(QA)[0] vdup.32 D1REG(QA), D0REG(QA)[1] vdup.32 D0REG(QA), D0REG(QA)[0] vadd.i32 QK0, QK0, QA vadd.i32 QK1, QK1, QB vadd.i32 QT0, QT0, QC vadd.i32 QT1, QT1, QD vmlal.u32 QY0, D0REG(QK0), D0REG(QT0) vmlal.u32 QY0, D1REG(QK0), D1REG(QT0) vmlal.u32 QY0, D0REG(QK1), D0REG(QT1) vmlal.u32 QY0, D1REG(QK1), D1REG(QT1) C Next 4 subkeys vld1.32 {QT0,QT1}, [KEY]! vmov QK0, QK2 vmov QK1, QT0 vmov QK2, QT1 C Save vtrn.32 QK0, QK1 C Gives us [8,12,10,14] and [9,13,11,15] vswp D1REG(QK0), D0REG(QK1) C Gives us [8,12,9,13] and [10,14,11,15] vtrn.32 QT0, QT1 C Gives us [12,16,14,18] and [13,17,15,19] vswp D1REG(QT0), D0REG(QT1) C Gives us [12,16,13,17] and [14,18,15,19] vadd.i32 QA, QA, QK0 vadd.i32 QB, QB, QK1 vadd.i32 QC, QC, QT0 vadd.i32 QD, QD, QT1 subs LENGTH, LENGTH, #32 vmlal.u32 QY1, D0REG(QA), D0REG(QC) vmlal.u32 QY1, D1REG(QA), D1REG(QC) vmlal.u32 QY1, D0REG(QB), D0REG(QD) vmlal.u32 QY1, D1REG(QB), D1REG(QD) bhi .Loop4 vst1.64 {QY0, QY1}, [OUT] vpop {q4,q5,q6} ldr pc, [sp], #+4 .Lnh3: vpush {q4} vld1.32 {QK0,QK1}, [KEY]! vmov.i64 QY1, #0 .Loop3: C Set m[i] <-- m[i-1] >> RSHIFT + m[i] << LSHIFT vld1.8 {QA, QB}, [MSG :64]! vshl.u64 QT0, QA, QRIGHT vshl.u64 QT1, QB, QRIGHT vshl.u64 QA, QA, QLEFT vshl.u64 QB, QB, QLEFT veor D0REG(QA), D0REG(QA), DM veor D1REG(QA), D1REG(QA), D0REG(QT0) veor D0REG(QB), D0REG(QB), D1REG(QT0) veor D1REG(QB), D1REG(QB), D0REG(QT1) vmov DM, D1REG(QT1) vld1.32 {QK2}, [KEY]! C Construct factors, with low half corresponding to first iteration, C and high half corresponding to the second iteration. vmov QT0, QK1 vtrn.32 QK0, QT0 C Gives us [0, 4, 2, 6] and [1, 5, 3, 7] vswp D1REG(QK0), D0REG(QT0) C Gives us [0, 4, 1, 5] and [2, 6, 3, 7] vdup.32 D0REG(QT1), D0REG(QA)[0] vdup.32 D1REG(QT1), D0REG(QA)[1] vadd.i32 QT1, QT1, QK0 vmov QK0, QK2 C Save for next iteration vtrn.32 QK1, QK2 C Gives us [4, 8, 2, 1] and [1, 5, 3, 7] vswp D1REG(QK1), D0REG(QK2) C Gives us [4, 8, 1, 5] and [2, 1, 3, 7] vdup.32 D0REG(QT2), D0REG(QB)[0] vdup.32 D1REG(QT2), D0REG(QB)[1] vadd.i32 QK1, QK1, QT2 vmlal.u32 QY0, D0REG(QT1), D0REG(QK1) vmlal.u32 QY0, D1REG(QT1), D1REG(QK1) vdup.32 D0REG(QT1), D1REG(QA)[0] vdup.32 D1REG(QT1), D1REG(QA)[1] vadd.i32 QT0, QT0, QT1 vdup.32 D0REG(QT1), D1REG(QB)[0] vdup.32 D1REG(QT1), D1REG(QB)[1] vadd.i32 QK2, QK2, QT1 vmlal.u32 QY0, D0REG(QT0), D0REG(QK2) vmlal.u32 QY0, D1REG(QT0), D1REG(QK2) vld1.32 {QK1}, [KEY]! vadd.i32 QA, QA, QK0 vadd.i32 QB, QB, QK1 subs LENGTH, LENGTH, #32 vmlal.u32 QY1, D0REG(QA), D0REG(QB) vmlal.u32 QY1, D1REG(QA), D1REG(QB) bhi .Loop3 vadd.i64 D0REG(QY1), D0REG(QY1), D1REG(QY1) vst1.64 {D0REG(QY0), D1REG(QY0), D0REG(QY1)}, [OUT] vpop {q4} ldr pc, [sp], #+4 .Lnh2: vld1.32 {QK0}, [KEY]! .Loop2: C Set m[i] <-- m[i-1] >> RSHIFT + m[i] << LSHIFT vld1.8 {QA, QB}, [MSG :64]! vshl.u64 QT0, QA, QRIGHT vshl.u64 QT1, QB, QRIGHT vshl.u64 QA, QA, QLEFT vshl.u64 QB, QB, QLEFT veor D0REG(QA), D0REG(QA), DM veor D1REG(QA), D1REG(QA), D0REG(QT0) veor D0REG(QB), D0REG(QB), D1REG(QT0) veor D1REG(QB), D1REG(QB), D0REG(QT1) vmov DM, D1REG(QT1) vld1.32 {QK1,QK2}, [KEY]! C Construct factors, with low half corresponding to first iteration, C and high half corresponding to the second iteration. vmov QT0, QK1 vtrn.32 QK0, QT0 C Gives us [0, 4, 2, 6] and [1, 5, 3, 7] vswp D1REG(QK0), D0REG(QT0) C Gives us [0, 4, 1, 5] and [2, 6, 3, 7] vdup.32 D0REG(QT1), D0REG(QA)[0] vdup.32 D1REG(QT1), D0REG(QA)[1] vadd.i32 QT1, QT1, QK0 vmov QK0, QK2 C Save for next iteration vtrn.32 QK1, QK2 C Gives us [4, 8, 6, 10] and [5, 9, 7, 11] vswp D1REG(QK1), D0REG(QK2) C Gives us [4, 8, 5, 9] and [6, 10, 7, 11] vdup.32 D0REG(QT2), D0REG(QB)[0] vdup.32 D1REG(QT2), D0REG(QB)[1] vadd.i32 QK1, QK1, QT2 vmlal.u32 QY0, D0REG(QT1), D0REG(QK1) vmlal.u32 QY0, D1REG(QT1), D1REG(QK1) vdup.32 D0REG(QT1), D1REG(QA)[0] vdup.32 D1REG(QT1), D1REG(QA)[1] vadd.i32 QT0, QT0, QT1 vdup.32 D0REG(QT1), D1REG(QB)[0] vdup.32 D1REG(QT1), D1REG(QB)[1] vadd.i32 QK2, QK2, QT1 subs LENGTH, LENGTH, #32 vmlal.u32 QY0, D0REG(QT0), D0REG(QK2) vmlal.u32 QY0, D1REG(QT0), D1REG(QK2) bhi .Loop2 vst1.64 {QY0}, [OUT] .Lend: ldr pc, [sp], #+4 EPILOGUE(_nettle_umac_nh_n)