#[macro_use] extern crate assert_float_eq; use neural_networks_rust::linalg::{Matrix, MatrixTrait, Scalar}; #[test] fn test_zeros() { let m = Matrix::zeros(2, 3); for row in m.get_data_row_leading() { for val in row { assert_float_relative_eq!(val, 0.0, 0.00001); } } } #[test] fn test_random_uniform() { let mat = Matrix::random_uniform(2, 2, 0.0, 1.0); assert_eq!(mat.dim().0, 2); assert_eq!(mat.dim().1, 2); assert!(mat .get_data_row_leading() .iter() .all(|row| { row.iter().all(|&val| val >= 0.0 && val < 1.0) })); } #[test] fn test_random_normal() { let mat = Matrix::random_normal(100, 100, 0.0, (1.0 as Scalar).sqrt()); assert_eq!(mat.dim().0, 100); assert_eq!(mat.dim().1, 100); // Check that the values are roughly normally distributed let mean = mat.get_data_row_leading().iter().flatten().sum::() / 10000.0; let variance = mat .get_data_row_leading() .iter() .flatten() .map(|val| (val - mean).powi(2)) .sum::() / 1000.0; assert!(mean.abs() < 0.1); assert!((variance.abs() - 1.0).abs() < 0.1); } #[test] fn test_from_iter() { let data = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0]; let m = Matrix::from_iter(2, 3, data.iter().cloned()); assert_float_relative_eq!(m.get_data_col_leading()[0][0], 1.0, 0.00001); assert_float_relative_eq!(m.get_data_col_leading()[2][1], 6.0, 0.00001); } #[test] fn test_from_row_leading_matrix() { let m = Matrix::from_row_leading_matrix(&vec![vec![1.0, 2.0, 3.0], vec![4.0, 5.0, 6.0]]); assert_float_relative_eq!(m.get_data_col_leading()[0][0], 1.0, 0.00001); assert_float_relative_eq!(m.get_data_col_leading()[2][1], 6.0, 0.00001); } #[test] fn test_from_column_vector() { let m = Matrix::from_column_vector(&vec![1.0, 2.0, 3.0]); assert_float_relative_eq!(m.get_data_row_leading()[0][0], 1.0, 0.00001); assert_float_relative_eq!(m.get_data_row_leading()[2][0], 3.0, 0.00001); } #[test] fn test_from_row_vector() { let m = Matrix::from_row_vector(&vec![1.0, 2.0, 3.0]); println!("{:?}", m.get_data_row_leading()); assert_float_relative_eq!(m.get_data_row_leading()[0][0], 1.0, 0.00001); assert_float_relative_eq!(m.get_data_row_leading()[0][2], 3.0, 0.00001); } #[test] fn test_get_column() { let m = Matrix::from_row_leading_matrix(&vec![vec![1.0, 2.0, 3.0], vec![4.0, 5.0, 6.0]]); let col = m.get_column(1); assert_float_relative_eq!(col[0], 2.0, 0.00001); assert_float_relative_eq!(col[1], 5.0, 0.00001); } #[test] fn test_get_row() { let m = Matrix::from_row_leading_matrix(&vec![vec![1.0, 2.0, 3.0], vec![4.0, 5.0, 6.0]]); let row = m.get_row(1); assert_float_relative_eq!(row[0], 4.0, 0.00001); assert_float_relative_eq!(row[1], 5.0, 0.00001); assert_float_relative_eq!(row[2], 6.0, 0.00001); } // #[test] // fn test_map() { // let m = Matrix::from_row_leading_matrix(&vec![vec![1.0, 2.0, 3.0], vec![4.0, 5.0, 6.0]]); // let mapped = m.map(|x| x * 2.0); // assert_float_relative_eq!(mapped.get_data_row_leading()[0][0], 2.0, 0.00001); // assert_float_relative_eq!(mapped.get_data_row_leading()[1][2], 12.0, 0.00001); // } #[test] fn test_dot() { let m1 = Matrix::from_row_leading_matrix(&vec![vec![1.0, 2.0, 3.0], vec![4.0, 5.0, 6.0]]); let m2 = Matrix::from_row_leading_matrix(&vec![vec![1.0, 2.0], vec![3.0, 4.0], vec![5.0, 6.0]]); let result = m1.dot(&m2); assert_eq!(result.dim(), (2, 2)); assert_float_relative_eq!(result.get_data_row_leading()[0][0], 22.0, 0.00001); assert_float_relative_eq!(result.get_data_row_leading()[1][1], 64.0, 0.00001); } #[test] fn test_columns_sum() { let m = Matrix::from_row_leading_matrix(&vec![vec![1.0, 2.0, 3.0], vec![4.0, 5.0, 6.0]]); let sums = m.columns_sum().get_data_row_leading(); assert_float_relative_eq!(sums[0][0], 6.0, 0.00001); assert_float_relative_eq!(sums[1][0], 15.0, 0.00001); } #[test] fn test_component_mul() { let m1 = Matrix::from_row_leading_matrix(&vec![vec![1.0, 2.0, 3.0], vec![4.0, 5.0, 6.0]]); let m2 = Matrix::from_row_leading_matrix(&vec![vec![2.0, 3.0, 4.0], vec![5.0, 6.0, 7.0]]); let result = m1.component_mul(&m2); assert_float_relative_eq!(result.get_data_row_leading()[0][0], 2.0, 0.00001); assert_float_relative_eq!(result.get_data_row_leading()[1][2], 42.0, 0.00001); } #[test] fn test_component_add() { let m1 = Matrix::from_row_leading_matrix(&vec![vec![1.0, 2.0, 3.0], vec![4.0, 5.0, 6.0]]); let m2 = Matrix::from_row_leading_matrix(&vec![vec![2.0, 3.0, 4.0], vec![5.0, 6.0, 7.0]]); let result = m1.component_add(&m2); println!("{:#?}", result.get_data_row_leading()); assert_float_relative_eq!(result.get_data_row_leading()[0][0], 3.0, 0.00001); assert_float_relative_eq!(result.get_data_row_leading()[1][2], 13.0, 0.00001); } #[test] fn test_component_sub() { let m1 = Matrix::from_row_leading_matrix(&vec![vec![1.0, 2.0, 3.0], vec![4.0, 5.0, 6.0]]); let m2 = Matrix::from_row_leading_matrix(&vec![vec![2.0, 3.0, 4.0], vec![5.0, 6.0, 7.0]]); let result = m1.component_sub(&m2); assert_float_relative_eq!(result.get_data_row_leading()[0][0], -1.0, 0.00001); assert_float_relative_eq!(result.get_data_row_leading()[1][2], -1.0, 0.00001); } #[test] fn test_component_div() { let m1 = Matrix::from_row_leading_matrix(&vec![vec![2.0, 4.0, 6.0], vec![8.0, 10.0, 12.0]]); let m2 = Matrix::from_row_leading_matrix(&vec![vec![1.0, 2.0, 3.0], vec![4.0, 5.0, 6.0]]); let result = m1.component_div(&m2); assert_float_relative_eq!(result.get_data_row_leading()[0][0], 2.0, 0.00001); assert_float_relative_eq!(result.get_data_row_leading()[1][2], 2.0, 0.00001); } #[test] fn test_transpose() { let m = Matrix::from_row_leading_matrix(&vec![vec![1.0, 2.0, 3.0], vec![4.0, 5.0, 6.0]]); let transposed = m.transpose(); assert_float_relative_eq!(transposed.get_data_row_leading()[0][0], 1.0, 0.00001); assert_float_relative_eq!(transposed.get_data_row_leading()[2][1], 6.0, 0.00001); }