from argparse import ArgumentParser, RawTextHelpFormatter from pathlib import Path from shutil import copyfile import os import logging from zipfile import ZipFile import lxml.etree as ET import wordfreq from chardet.universaldetector import UniversalDetector from chunker import write_chunker # type: ignore def write_freqlist(f, lang_code, top_n=1000): # wordfreq lists are lowercase so we add title case manually for word in wordfreq.top_n_list(lang_code, top_n): f.write(word + "\n") f.write(word.title() + "\n") def canonicalize(path): et = ET.parse(str(path)) et.write_c14n(open(path, "wb")) def copy_lt_files(out_dir, lt_dir, lang_code): tag_dir = out_dir / "tags" tag_dir.mkdir() lt_resource_dir = lt_dir / "org" / "languagetool" / "resource" / lang_code lt_rule_dir = lt_dir / "org" / "languagetool" / "rules" / lang_code for source, dest in [ (lt_resource_dir / "added.txt", tag_dir / "added.txt"), (lt_resource_dir / "removed.txt", tag_dir / "removed.txt"), (lt_resource_dir / "disambiguation.xml", out_dir / "disambiguation.xml"), (lt_resource_dir / "multiwords.txt", tag_dir / "multiwords.txt",), (lt_rule_dir / "grammar.xml", out_dir / "grammar.xml"), ]: if source.exists(): copyfile(source, dest) else: logging.warning(f"{source} does not exist.") # copy from zipfiles for zipfile, source, dest in [ ( lt_dir / "libs" / "languagetool-core.jar", Path("org") / "languagetool" / "resource" / "segment.srx", out_dir / "segment.srx", ) ]: file = ZipFile(zipfile) with open(dest, "wb") as f: f.write(file.read(str(source))) # canonicalize XML for xmlfile in ["grammar.xml", "disambiguation.xml"]: canonicalize(out_dir / xmlfile) def dump_dictionary(out_path, lt_dir, tag_dict_path, tag_info_path): # dump dictionary, see https://dev.languagetool.org/developing-a-tagger-dictionary os.system( f"java -cp {lt_dir / 'languagetool.jar'} org.languagetool.tools.DictionaryExporter " f"-i {tag_dict_path} -info {tag_info_path} -o {out_path}" ) # the dumped dictionary is sometimes not in utf-8 detector = UniversalDetector() for i, line in enumerate(open(out_path, "rb")): detector.feed(line) if i > 10_000: detector.close() break result = detector.result print( f"Dump was encoded as {result['encoding']} with confidence {result['confidence']}." ) dump_bytes = open(out_path, "rb").read() with open(out_path, "w") as f: f.write(dump_bytes.decode(result["encoding"])) if __name__ == "__main__": parser = ArgumentParser( description=""" Script to generate the build files for nlprule binaries. See the accompanying README.md for example usages. Requirements: - Python >= 3.6 - a version of Java compatible with the used LanguageTool version - Python packages from `requirements.txt`. Install with `pip install -r requirements.txt` """, formatter_class=RawTextHelpFormatter, ) parser.add_argument( "--lt_dir", type=lambda p: Path(p).absolute(), help="Directory the LanguageTool Desktop version is in. Download instructions: https://dev.languagetool.org/http-server#getting-the-server.", ) parser.add_argument( "--lang_code", type=str, help="Language code in ISO_639-1 (two letter) format e. g. 'en'.", ) parser.add_argument( "--tag_dict_path", type=lambda p: Path(p).absolute(), help="Path to a tagger dictionary .dict file.", ) parser.add_argument( "--tag_info_path", type=lambda p: Path(p).absolute(), help="Path to the accompanying tagger dictionary .info file.", ) parser.add_argument( "--chunker_token_model", default=None, help=""" Path to the OpenNLP tokenizer binary. Binaries can be downloaded from here: http://opennlp.sourceforge.net/models-1.5/ Only needed if the language requires a chunker (e. g. English). """, ) parser.add_argument( "--chunker_pos_model", default=None, help="Path to the OpenNLP POS tagger binary. See token model message for details.", ) parser.add_argument( "--chunker_chunk_model", default=None, help="Path to the OpenNLP chunker binary. See token model message for details.", ) parser.add_argument( "--out_dir", type=lambda p: Path(p).absolute(), help="Directory to store the build files in.", ) args = parser.parse_args() args.out_dir.mkdir(parents=True) write_freqlist(open(args.out_dir / "common.txt", "w"), args.lang_code) copy_lt_files(args.out_dir, args.lt_dir, args.lang_code) dump_dictionary( args.out_dir / "tags" / "output.dump", args.lt_dir, args.tag_dict_path, args.tag_info_path, ) if ( args.chunker_token_model is not None and args.chunker_pos_model is not None and args.chunker_chunk_model is not None ): write_chunker( args.out_dir / "chunker.json", args.chunker_token_model, args.chunker_pos_model, args.chunker_chunk_model, ) open(args.out_dir / "lang_code.txt", "w").write(args.lang_code) print("Success!")