# Seeds for failure cases proptest has generated in the past. It is # automatically read and these particular cases re-run before any # novel cases are generated. # # It is recommended to check this file in to source control so that # everyone who runs the test benefits from these saved cases. cc 8533443d339b8469164f04b03c699fec5ee2b97edbf885680217ec3d3d27ce30 # shrinks to dnn = DNN { layers: [Dense(Affine { basis: [[0.0, 0.0, 0.0, -0.0]], shape=[1, 4], strides=[4, 1], layout=CFcf (0xf), const ndim=2, shift: [0.0], shape=[1], strides=[1], layout=CFcf (0xf), const ndim=1 }), ReLU(1), Dense(Affine { basis: [[0.0]], shape=[1, 1], strides=[1, 1], layout=CFcf (0xf), const ndim=2, shift: [0.0], shape=[1], strides=[1], layout=CFcf (0xf), const ndim=1 }), ReLU(1), Dense(Affine { basis: [[0.0]], shape=[1, 1], strides=[1, 1], layout=CFcf (0xf), const ndim=2, shift: [0.0], shape=[1], strides=[1], layout=CFcf (0xf), const ndim=1 }), ReLU(1), Dense(Affine { basis: [[0.0]], shape=[1, 1], strides=[1, 1], layout=CFcf (0xf), const ndim=2, shift: [0.0], shape=[1], strides=[1], layout=CFcf (0xf), const ndim=1 }), ReLU(1)] }, input_bounds = Bounds { data: [[0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0]], shape=[2, 4], strides=[4, 1], layout=Cc (0x5), const ndim=2 } cc ab8a78c45b535486fc4e2b6524352da987cb9d09b1efd22b006a2e59797c037e # shrinks to dnn = DNN { layers: [Dense(Affine { basis: [[0.00000000000000000000000000000000000000000000000000000000000000000000000010988314902863442, 57744222349471936000000000000000000000000000000000000000000000000000000000000000000000000000000000000.0, 0.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000005290204878717204, 10661003275632896000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000.0]], shape=[1, 4], strides=[4, 1], layout=CFcf (0xf), const ndim=2, shift: [48853186906014240000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000.0], shape=[1], strides=[1], layout=CFcf (0xf), const ndim=1 }), ReLU(1), Dense(Affine { basis: [[15695202275020153000000000000000000000000000000000.0]], shape=[1, 1], strides=[1, 1], layout=CFcf (0xf), const ndim=2, shift: [94072189427520670000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000.0], shape=[1], strides=[1], layout=CFcf (0xf), const ndim=1 }), ReLU(1)] }, input_bounds = Bounds { data: [[110965158624368350000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000.0, 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000023512558535174423, 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003442383709695862, 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000045444324172948826], [29074994665575040000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000.0, 0.00000000000000000000000000000000000000000000000000000000000000000000000000002028039614995127, 202816630227827000000000000000000000000000000000000000000000.0, 0.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000005190741492170788]], shape=[2, 4], strides=[4, 1], layout=Cc (0x5), const ndim=2 } cc 3bde939656785d51c90bcb48b950877516b1b854dfe38cfd16bb9129b605c6f1 # shrinks to dnn = DNN { layers: [Dense(Affine { basis: [[-3.61850601852876, 9.910230138475946]], shape=[1, 2], strides=[2, 1], layout=CFcf (0xf), const ndim=2, shift: [0.0], shape=[1], strides=[1], layout=CFcf (0xf), const ndim=1 }), ReLU(1), Dense(Affine { basis: [[8.391049217922308]], shape=[1, 1], strides=[1, 1], layout=CFcf (0xf), const ndim=2, shift: [0.0], shape=[1], strides=[1], layout=CFcf (0xf), const ndim=1 }), ReLU(1)] }, input_bounds = Bounds { data: [[-6.612886847167929, 0.0], [4.301598361664709, 3.2934076271147372]], shape=[2, 2], strides=[2, 1], layout=Cc (0x5), const ndim=2 } cc cab8b582cd248df4ef68e833d250cae603d14ce4a8ac6d6e4ce6a499d96849fd # shrinks to dnn = DNN { layers: [Dense(Affine { basis: [[0.0, 0.0, 0.0]], shape=[1, 3], strides=[3, 1], layout=CFcf (0xf), const ndim=2, shift: [7.850116429876685], shape=[1], strides=[1], layout=CFcf (0xf), const ndim=1 }), ReLU(1), Dense(Affine { basis: [[9.490434433832146], [0.0]], shape=[2, 1], strides=[1, 1], layout=CFcf (0xf), const ndim=2, shift: [0.0, 0.0], shape=[2], strides=[1], layout=CFcf (0xf), const ndim=1 }), ReLU(2)] }, input_bounds = Bounds { data: [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], shape=[2, 3], strides=[3, 1], layout=Cc (0x5), const ndim=2 } cc 2806d6f71c4361f3898bb5c3464d4ae3db8d3eb5fa120285797694bce886718e # shrinks to dnn = DNN { layers: [Dense(Affine { basis: [[-8.294978719547164, 6.354437512696531, 8.686046096063535]], shape=[1, 3], strides=[3, 1], layout=CFcf (0xf), const ndim=2, shift: [0.0], shape=[1], strides=[1], layout=CFcf (0xf), const ndim=1 }), ReLU(1), Dense(Affine { basis: [[0.0], [-4.390275110906798]], shape=[2, 1], strides=[1, 1], layout=CFcf (0xf), const ndim=2, shift: [0.0, 3.4491453192575996], shape=[2], strides=[1], layout=CFcf (0xf), const ndim=1 }), ReLU(2)] }, input_bounds = Bounds { data: [[0.6292664102086754, 0.0, -1.0879770233966735], [6.850817125805552, 5.084226365451784, 1.0342462647644535]], shape=[2, 3], strides=[3, 1], layout=Cc (0x5), const ndim=2 } cc 476c6cacc3b0f3d69fcb0dd3b4f879a1d8994dd5d9ef3c36c42ee24c66935db8 # shrinks to dnn = DNN { layers: [Dense(Affine { basis: [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]], shape=[1, 8], strides=[8, 1], layout=CFcf (0xf), const ndim=2, shift: [0.0], shape=[1], strides=[1], layout=CFcf (0xf), const ndim=1 }), ReLU(1), Dense(Affine { basis: [[0.0]], shape=[1, 1], strides=[1, 1], layout=CFcf (0xf), const ndim=2, shift: [0.0], shape=[1], strides=[1], layout=CFcf (0xf), const ndim=1 }), ReLU(1), Dense(Affine { basis: [[0.0]], shape=[1, 1], strides=[1, 1], layout=CFcf (0xf), const ndim=2, shift: [0.0], shape=[1], strides=[1], layout=CFcf (0xf), const ndim=1 }), ReLU(1), Dense(Affine { basis: [[0.0]], shape=[1, 1], strides=[1, 1], layout=CFcf (0xf), const ndim=2, shift: [0.0], shape=[1], strides=[1], layout=CFcf (0xf), const ndim=1 }), ReLU(1), Dense(Affine { basis: [[0.0]], shape=[1, 1], strides=[1, 1], layout=CFcf (0xf), const ndim=2, shift: [0.0], shape=[1], strides=[1], layout=CFcf (0xf), const ndim=1 }), ReLU(1), Dense(Affine { basis: [[0.0], [0.0], [0.0], [0.0]], shape=[4, 1], strides=[1, 1], layout=CFcf (0xf), const ndim=2, shift: [0.0, 0.0, 0.0, -7.420033267733661], shape=[4], strides=[1], layout=CFcf (0xf), const ndim=1 }), ReLU(4)] }, input_bounds = Bounds { data: [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]], shape=[2, 8], strides=[8, 1], layout=Cc (0x5), const ndim=2 } cc 980797ea04ce45b5b16954de9925a872e4f1bec120125d80867aa4b2e848d71d # shrinks to dnn = DNN { layers: [Dense(Affine { basis: [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]], shape=[1, 8], strides=[8, 1], layout=CFcf (0xf), const ndim=2, shift: [0.0], shape=[1], strides=[1], layout=CFcf (0xf), const ndim=1 }), ReLU(1), Dense(Affine { basis: [[0.0]], shape=[1, 1], strides=[1, 1], layout=CFcf (0xf), const ndim=2, shift: [0.0], shape=[1], strides=[1], layout=CFcf (0xf), const ndim=1 }), ReLU(1), Dense(Affine { basis: [[0.0]], shape=[1, 1], strides=[1, 1], layout=CFcf (0xf), const ndim=2, shift: [0.0], shape=[1], strides=[1], layout=CFcf (0xf), const ndim=1 }), ReLU(1), Dense(Affine { basis: [[0.0]], shape=[1, 1], strides=[1, 1], layout=CFcf (0xf), const ndim=2, shift: [3.044379965921017], shape=[1], strides=[1], layout=CFcf (0xf), const ndim=1 }), ReLU(1), Dense(Affine { basis: [[-4.192293341216362]], shape=[1, 1], strides=[1, 1], layout=CFcf (0xf), const ndim=2, shift: [0.0], shape=[1], strides=[1], layout=CFcf (0xf), const ndim=1 }), ReLU(1), Dense(Affine { basis: [[-1.2840981797345208]], shape=[1, 1], strides=[1, 1], layout=CFcf (0xf), const ndim=2, shift: [0.0], shape=[1], strides=[1], layout=CFcf (0xf), const ndim=1 }), ReLU(1)] }, input_bounds = Bounds { data: [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]], shape=[2, 8], strides=[8, 1], layout=Cc (0x5), const ndim=2 } cc 1921595210080848421d757f054e11a3a174b03d1dc65d17181321502bc9079c # shrinks to dnn = DNN { layers: [Dense(Affine { basis: [[0.0, 0.0, 0.0, -1.0218556338461084, 0.0, 0.0, 0.0, 0.0]], shape=[1, 8], strides=[8, 1], layout=CFcf (0xf), const ndim=2, shift: [0.0], shape=[1], strides=[1], layout=CFcf (0xf), const ndim=1 }), ReLU(1), Dense(Affine { basis: [[0.0], [0.0], [0.0], [0.0]], shape=[4, 1], strides=[1, 1], layout=CFcf (0xf), const ndim=2, shift: [0.0, 0.0, 0.0, -6.96772238892176], shape=[4], strides=[1], layout=CFcf (0xf), const ndim=1 }), ReLU(4)] }, input_bounds = Bounds { data: [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]], shape=[2, 8], strides=[8, 1], layout=Cc (0x5), const ndim=2 } cc b69daf69764b4908db37770a84e7dca830b3757454205870a96aee7f74c11d3c # shrinks to dnn = DNN { layers: [Dense(Affine { basis: [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]], shape=[1, 8], strides=[8, 1], layout=CFcf (0xf), const ndim=2, shift: [0.0], shape=[1], strides=[1], layout=CFcf (0xf), const ndim=1 }), ReLU(1), Dense(Affine { basis: [[0.0]], shape=[1, 1], strides=[1, 1], layout=CFcf (0xf), const ndim=2, shift: [0.0], shape=[1], strides=[1], layout=CFcf (0xf), const ndim=1 }), ReLU(1), Dense(Affine { basis: [[0.0], [0.0], [0.0], [0.0]], shape=[4, 1], strides=[1, 1], layout=CFcf (0xf), const ndim=2, shift: [0.0, 0.0, 0.0, -0.5343673265294449], shape=[4], strides=[1], layout=CFcf (0xf), const ndim=1 }), ReLU(4)] }, input_bounds = Bounds { data: [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]], shape=[2, 8], strides=[8, 1], layout=Cc (0x5), const ndim=2 } cc 7bb9fcef7ee7f2ccdfd6ec0dc56351e69eecdf137a07ce5e694d7280475837bb # shrinks to dnn = DNN { layers: [Dense(Affine { basis: [[-6.481650146955129, 5.843528500879923, 0.0, 4.855272056810907, -2.3626159719713336, 7.538608614315848, -1.5551247974567808, 6.985901214984146]], shape=[1, 8], strides=[8, 1], layout=CFcf (0xf), const ndim=2, shift: [-8.9772261990122], shape=[1], strides=[1], layout=CFcf (0xf), const ndim=1 }), ReLU(1), Dense(Affine { basis: [[-5.619705030944759]], shape=[1, 1], strides=[1, 1], layout=CFcf (0xf), const ndim=2, shift: [7.845279657138292], shape=[1], strides=[1], layout=CFcf (0xf), const ndim=1 }), ReLU(1), Dense(Affine { basis: [[0.0], [0.0], [0.0], [5.778539862008429]], shape=[4, 1], strides=[1, 1], layout=CFcf (0xf), const ndim=2, shift: [0.0, 0.0, 0.0, 0.0], shape=[4], strides=[1], layout=CFcf (0xf), const ndim=1 }), ReLU(4)] }, input_bounds = Bounds { data: [[3.813944101218972, -7.725799323857174, 0.0, 0.0, -4.259003322066008, -4.5097109543472325, -7.680642151898813, 0.0], [7.706849604822953, -6.119631068901836, 0.0, 2.0239712910086496, 0.0, -3.4692731400335752, 0.0, 9.456447473976375]], shape=[2, 8], strides=[8, 1], layout=Cc (0x5), const ndim=2 } cc 2cc5081974f0b156edb884e1a60a57f5a8ae8593b0eec38a8a8a421519485aa7 # shrinks to dnn = DNN { layers: [Dense(Affine { basis: [[-0.7625242743170766, 6.334081387775775]], shape=[1, 2], strides=[2, 1], layout=CFcf (0xf), const ndim=2, shift: [-6.20959343642105], shape=[1], strides=[1], layout=CFcf (0xf), const ndim=1 }), ReLU(1), Dense(Affine { basis: [[0.0], [-4.9509998161659885]], shape=[2, 1], strides=[1, 1], layout=CFcf (0xf), const ndim=2, shift: [0.0, 3.9769917314303527], shape=[2], strides=[1], layout=CFcf (0xf), const ndim=1 }), ReLU(2)] }, input_bounds = Bounds { data: [[-5.634304421673528, 0.0], [0.0, 0.3171725878412701]], shape=[2, 2], strides=[2, 1], layout=Cc (0x5), const ndim=2 } cc 415d7c2f2f76539dc4a64281d6198c626cfec50b5f21741c3b14c9d0715de4ee # shrinks to dnn = DNN { layers: [Dense(Affine { basis: [[-8.233763131780067, -5.152204233185755]], shape=[1, 2], strides=[2, 1], layout=CFcf (0xf), const ndim=2, shift: [-6.73905225007565], shape=[1], strides=[1], layout=CFcf (0xf), const ndim=1 }), ReLU(1), Dense(Affine { basis: [[0.0]], shape=[1, 1], strides=[1, 1], layout=CFcf (0xf), const ndim=2, shift: [0.0], shape=[1], strides=[1], layout=CFcf (0xf), const ndim=1 }), ReLU(1), Dense(Affine { basis: [[0.0], [0.0]], shape=[2, 1], strides=[1, 1], layout=CFcf (0xf), const ndim=2, shift: [0.0, 0.0], shape=[2], strides=[1], layout=CFcf (0xf), const ndim=1 }), ReLU(2)] }, input_bounds = Bounds { data: [[-2.1704073366590215, 2.013416516463483], [0.0, 5.501885897255182]], shape=[2, 2], strides=[2, 1], layout=Cc (0x5), const ndim=2 }