# Online statistics in Rust 🦀 **`online-statistics` is crate 🦀 for Blazingly fast, generic and serializable online statistics.** ## Quickstart --------- Let's compute the online median and then serialize it: ```rust use online_statistics::quantile::Quantile; use online_statistics::stats::Univariate; let data: Vec = vec![9., 7., 3., 2., 6., 1., 8., 5., 4.]; let mut running_median: Quantile = Quantile::new(0.5_f64).unwrap(); for x in data.into_iter() { running_median.update(x); // update the current statistics println!("The actual median value is: {}", running_median.get()); } assert_eq!(running_median.get(), 5.0); // Convert the statistic to a JSON string. let serialized = serde_json::to_string(&running_median).unwrap(); // Convert the JSON string back to a statistic. let deserialized: Quantile = serde_json::from_str(&serialized).unwrap(); ``` Now let's compute the online sum using the iterators: ```rust use online_statistics::iter::IterStatisticsExtend; let data: Vec = vec![1., 2., 3.]; let vec_true: Vec = vec![1., 3., 6.]; for (d, t) in data.into_iter().online_sum().zip(vec_true.into_iter()) { assert_eq!(d, t); // ^^^^^^^^^^ } ``` You can also compute rolling statistics; in the following example let's compute the rolling sum on 2 previous data: ```rust use online_statistics::rolling::Rolling; use online_statistics::stats::Univariate; use online_statistics::variance::Variance; let data: Vec = vec![9., 7., 3., 2., 6., 1., 8., 5., 4.]; let mut running_var: Variance = Variance::default(); // We wrap `running_var` inside the `Rolling` struct. let mut rolling_var: Rolling = Rolling::new(&mut running_var, 2).unwrap(); for x in data.into_iter() { rolling_var.update(x); } assert_eq!(rolling_var.get(), 0.5); ``` ## Installation --------- Add the following line to your `cargo.toml`: ``` [dependencies] online-statistics = "0.2.6" ``` ## Statistics available | Statistics | Rollable ?| |--------------------------------- |---------- | | Mean | ✅ | | Variance | ✅ | | Sum | ✅ | | Min | ✅ | | Max | ✅ | | Count | ❌ | | Quantile | ✅ | | Peak to peak | ✅ | | Exponentially weighted mean | ❌ | | Exponentially weighted variance | ❌ | | Interquartile range | ✅ | | Kurtosis | ❌ | | Skewness | ❌ | | Covariance | ❌ | ## Inspiration --------- The `stats` module of the [`river`](https://github.com/online-ml/river) library in `Python` greatly inspired this crate.