## onnx-runner
![build workflow](https://github.com/xgpxg/onnx-runner/actions/workflows/build.yml/badge.svg)
![release workflow](https://github.com/xgpxg/onnx-runner/actions/workflows/release.yml/badge.svg)
Use [ORT](https://github.com/pykeio/ort) to run ONNX model.
Currently, only YOLO models are supported, and other ONNX models may be supported in the
future
## Install
### Requirements
- If you want to use CPU to run onnx-runner, nothing to install
- If you want to use GPU to run onnx-runner, you need install CUDA 12.x and CUDNN 9.x
### Windows
- Download latest
version: [onnx-runner-0.1.1-windows.tar.gz](https://github.com/xgpxg/onnx-runner/releases/download/v0.1.1/onnx-runner-v0.1.1-windows.tar.gz)
- Or download from release page: [Releases](https://github.com/xgpxg/onnx-runner/releases)
- Extract `onnx-runner-{version}-windows.tar.gz` to your path. The compressed package already includes the necessary
dependencies for running ONNX and OpenCV. You don't need to download any other dependencies
- Run onnx-runner `` with CMD or PowerShell
```shell
onnx-runner.exe -m -i --show
```
### Ubuntu
- Download and install
```shell
# Download latest package
wget https://github.com/xgpxg/onnx-runner/releases/download/v0.1.1/onnx-runner_0.1.1_amd64.deb
# Install package
sudo apt -f install ./onnx-runner_0.1.1_amd64.deb
```
Noteļ¼The OpenCV will be installed by default
- Run onnx-runner
```shell
onnx-runner -m -i --show
```
### Other Linux
- Download latest
version: [onnx-runner-v0.1.1-linux.tar.gz](https://github.com/xgpxg/onnx-runner/releases/download/v0.1.1/onnx-runner-v0.1.1-linux.tar.gz)
- Extract `onnx-runner-{version}-linux.tar.gz` to your path.
- Copy `libonnxruntime.so` to /usr/lib
- Install `Opencv`
- Run onnx-runner
```shell
onnx-runner -m -i --show
```
### MacOS
Not currently supported
## usage
### CLI
```shell
onnx-runner -m yolov8n.onnx -i image.jpg --show
```
For more information, see help:
```shell
onnx-runner -h
Usage: onnx-runner.exe [OPTIONS] --model --input
Options:
-m, --model YOLO onnx model file path, support version: v5, v7, v8, v10, and v11
-i, --input Input source, like image file, http image, camera, or rtsp
--yolo-version The number of YOLO version, like 5, 7 ,8 ,10, or 11. Specifically, for YOLO 10, it needs to be set up [default: 8]
--show Should the detection results be displayed in the gui window, default is false
-h, --help Print help
-V, --version Print version
```
Supported input sources:
| Input | Example |
|---------------------|------------------------------------------------------------------------|
| Local image file | D:/images/img.png |
| Internet image file | https://cdn.pixabay.com/photo/2019/11/05/01/00/couple-4602505_1280.jpg |
| Local video file | D:/images/video.mp4 |
| Internet video file | https://cdn.pixabay.com/video/2024/06/04/215258_large.mp4 |
| Local camera | camera://0 |
| Ip camera(RTSP) | rtsp://192.168.1.5:554 |
### Lib
You need to install `rust` and `cargo`, then add onnx-runner to your project.
```shell
cargo add onnx-runner
```
Example
```rust
fn main() {
//Use default config
let mut config = ModelRunConfig::default();
//Create a new runner
let runner = ModelRunner::new(args.model.as_str(), config).unwrap();
//Run with input. The input can be a local image, a network image, a camera, or a remote camera that supports RTSP
runner.run(args.input.as_str(), ModelRunner::no_pre, |res, mut mat| {
//Your code in here. You can send result to a http
println!("Result: {:?}", &res);
},
)?;
}
```
## CPU/GPU supports
All CPU are supported.
Currently only supports Nvidia GPUs. You need install CUDA 12.x + and cudnn 9.x + on your device.
## Troubleshooting
- I have installed CUDA and CUDNN, but why is the CPU still used instead of the GPU?
First check whether the CUDA environment variables have been configured, and then check whether the CUDNN dependency
libraries have been copied to the CUDA directory. Pay attention to the versions of CUDA and CUDNN. Currently only
CUDA12.x and CUDNN9.x are supported.