// Protocol Buffers - Google's data interchange format // Copyright 2014 Google Inc. All rights reserved. // https://developers.google.com/protocol-buffers/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "protobuf.h" // ----------------------------------------------------------------------------- // Repeated field container type. // ----------------------------------------------------------------------------- const rb_data_type_t RepeatedField_type = { "Google::Protobuf::RepeatedField", { RepeatedField_mark, RepeatedField_free, NULL }, }; VALUE cRepeatedField; RepeatedField* ruby_to_RepeatedField(VALUE _self) { RepeatedField* self; TypedData_Get_Struct(_self, RepeatedField, &RepeatedField_type, self); return self; } void* RepeatedField_memoryat(RepeatedField* self, int index, int element_size) { return ((uint8_t *)self->elements) + index * element_size; } static int index_position(VALUE _index, RepeatedField* repeated_field) { int index = NUM2INT(_index); if (index < 0 && repeated_field->size > 0) { index = repeated_field->size + index; } return index; } VALUE RepeatedField_subarray(VALUE _self, long beg, long len) { RepeatedField* self = ruby_to_RepeatedField(_self); int element_size = native_slot_size(self->field_type); upb_fieldtype_t field_type = self->field_type; VALUE field_type_class = self->field_type_class; size_t off = beg * element_size; VALUE ary = rb_ary_new2(len); for (int i = beg; i < beg + len; i++, off += element_size) { void* mem = ((uint8_t *)self->elements) + off; VALUE elem = native_slot_get(field_type, field_type_class, mem); rb_ary_push(ary, elem); } return ary; } /* * call-seq: * RepeatedField.each(&block) * * Invokes the block once for each element of the repeated field. RepeatedField * also includes Enumerable; combined with this method, the repeated field thus * acts like an ordinary Ruby sequence. */ VALUE RepeatedField_each(VALUE _self) { RepeatedField* self = ruby_to_RepeatedField(_self); upb_fieldtype_t field_type = self->field_type; VALUE field_type_class = self->field_type_class; int element_size = native_slot_size(field_type); size_t off = 0; for (int i = 0; i < self->size; i++, off += element_size) { void* memory = (void *) (((uint8_t *)self->elements) + off); VALUE val = native_slot_get(field_type, field_type_class, memory); rb_yield(val); } return _self; } /* * call-seq: * RepeatedField.[](index) => value * * Accesses the element at the given index. Returns nil on out-of-bounds */ VALUE RepeatedField_index(int argc, VALUE* argv, VALUE _self) { RepeatedField* self = ruby_to_RepeatedField(_self); int element_size = native_slot_size(self->field_type); upb_fieldtype_t field_type = self->field_type; VALUE field_type_class = self->field_type_class; VALUE arg = argv[0]; long beg, len; if (argc == 1){ if (FIXNUM_P(arg)) { /* standard case */ void* memory; int index = index_position(argv[0], self); if (index < 0 || index >= self->size) { return Qnil; } memory = RepeatedField_memoryat(self, index, element_size); return native_slot_get(field_type, field_type_class, memory); }else{ /* check if idx is Range */ switch (rb_range_beg_len(arg, &beg, &len, self->size, 0)) { case Qfalse: break; case Qnil: return Qnil; default: return RepeatedField_subarray(_self, beg, len); } } } /* assume 2 arguments */ beg = NUM2LONG(argv[0]); len = NUM2LONG(argv[1]); if (beg < 0) { beg += self->size; } if (beg >= self->size) { return Qnil; } return RepeatedField_subarray(_self, beg, len); } /* * call-seq: * RepeatedField.[]=(index, value) * * Sets the element at the given index. On out-of-bounds assignments, extends * the array and fills the hole (if any) with default values. */ VALUE RepeatedField_index_set(VALUE _self, VALUE _index, VALUE val) { RepeatedField* self = ruby_to_RepeatedField(_self); upb_fieldtype_t field_type = self->field_type; VALUE field_type_class = self->field_type_class; int element_size = native_slot_size(field_type); void* memory; int index = index_position(_index, self); if (index < 0 || index >= (INT_MAX - 1)) { return Qnil; } if (index >= self->size) { upb_fieldtype_t field_type = self->field_type; int element_size = native_slot_size(field_type); RepeatedField_reserve(self, index + 1); for (int i = self->size; i <= index; i++) { void* elem = RepeatedField_memoryat(self, i, element_size); native_slot_init(field_type, elem); } self->size = index + 1; } memory = RepeatedField_memoryat(self, index, element_size); native_slot_set("", field_type, field_type_class, memory, val); return Qnil; } static int kInitialSize = 8; void RepeatedField_reserve(RepeatedField* self, int new_size) { void* old_elems = self->elements; int elem_size = native_slot_size(self->field_type); if (new_size <= self->capacity) { return; } if (self->capacity == 0) { self->capacity = kInitialSize; } while (self->capacity < new_size) { self->capacity *= 2; } self->elements = ALLOC_N(uint8_t, elem_size * self->capacity); if (old_elems != NULL) { memcpy(self->elements, old_elems, self->size * elem_size); xfree(old_elems); } } /* * call-seq: * RepeatedField.push(value) * * Adds a new element to the repeated field. */ VALUE RepeatedField_push(VALUE _self, VALUE val) { RepeatedField* self = ruby_to_RepeatedField(_self); upb_fieldtype_t field_type = self->field_type; int element_size = native_slot_size(field_type); void* memory; RepeatedField_reserve(self, self->size + 1); memory = (void *) (((uint8_t *)self->elements) + self->size * element_size); native_slot_set("", field_type, self->field_type_class, memory, val); // native_slot_set may raise an error; bump size only after set. self->size++; return _self; } VALUE RepeatedField_push_vararg(VALUE _self, VALUE args) { for (int i = 0; i < RARRAY_LEN(args); i++) { RepeatedField_push(_self, rb_ary_entry(args, i)); } return _self; } // Used by parsing handlers. void RepeatedField_push_native(VALUE _self, void* data) { RepeatedField* self = ruby_to_RepeatedField(_self); upb_fieldtype_t field_type = self->field_type; int element_size = native_slot_size(field_type); void* memory; RepeatedField_reserve(self, self->size + 1); memory = (void *) (((uint8_t *)self->elements) + self->size * element_size); memcpy(memory, data, element_size); self->size++; } void* RepeatedField_index_native(VALUE _self, int index) { RepeatedField* self = ruby_to_RepeatedField(_self); upb_fieldtype_t field_type = self->field_type; int element_size = native_slot_size(field_type); return RepeatedField_memoryat(self, index, element_size); } int RepeatedField_size(VALUE _self) { RepeatedField* self = ruby_to_RepeatedField(_self); return self->size; } /* * Private ruby method, used by RepeatedField.pop */ VALUE RepeatedField_pop_one(VALUE _self) { RepeatedField* self = ruby_to_RepeatedField(_self); upb_fieldtype_t field_type = self->field_type; VALUE field_type_class = self->field_type_class; int element_size = native_slot_size(field_type); int index; void* memory; VALUE ret; if (self->size == 0) { return Qnil; } index = self->size - 1; memory = RepeatedField_memoryat(self, index, element_size); ret = native_slot_get(field_type, field_type_class, memory); self->size--; return ret; } /* * call-seq: * RepeatedField.replace(list) * * Replaces the contents of the repeated field with the given list of elements. */ VALUE RepeatedField_replace(VALUE _self, VALUE list) { RepeatedField* self = ruby_to_RepeatedField(_self); Check_Type(list, T_ARRAY); self->size = 0; for (int i = 0; i < RARRAY_LEN(list); i++) { RepeatedField_push(_self, rb_ary_entry(list, i)); } return list; } /* * call-seq: * RepeatedField.clear * * Clears (removes all elements from) this repeated field. */ VALUE RepeatedField_clear(VALUE _self) { RepeatedField* self = ruby_to_RepeatedField(_self); self->size = 0; return _self; } /* * call-seq: * RepeatedField.length * * Returns the length of this repeated field. */ VALUE RepeatedField_length(VALUE _self) { RepeatedField* self = ruby_to_RepeatedField(_self); return INT2NUM(self->size); } static VALUE RepeatedField_new_this_type(VALUE _self) { RepeatedField* self = ruby_to_RepeatedField(_self); VALUE new_rptfield = Qnil; VALUE element_type = fieldtype_to_ruby(self->field_type); if (self->field_type_class != Qnil) { new_rptfield = rb_funcall(CLASS_OF(_self), rb_intern("new"), 2, element_type, self->field_type_class); } else { new_rptfield = rb_funcall(CLASS_OF(_self), rb_intern("new"), 1, element_type); } return new_rptfield; } /* * call-seq: * RepeatedField.dup => repeated_field * * Duplicates this repeated field with a shallow copy. References to all * non-primitive element objects (e.g., submessages) are shared. */ VALUE RepeatedField_dup(VALUE _self) { RepeatedField* self = ruby_to_RepeatedField(_self); VALUE new_rptfield = RepeatedField_new_this_type(_self); RepeatedField* new_rptfield_self = ruby_to_RepeatedField(new_rptfield); upb_fieldtype_t field_type = self->field_type; size_t elem_size = native_slot_size(field_type); size_t off = 0; RepeatedField_reserve(new_rptfield_self, self->size); for (int i = 0; i < self->size; i++, off += elem_size) { void* to_mem = (uint8_t *)new_rptfield_self->elements + off; void* from_mem = (uint8_t *)self->elements + off; native_slot_dup(field_type, to_mem, from_mem); new_rptfield_self->size++; } return new_rptfield; } // Internal only: used by Google::Protobuf.deep_copy. VALUE RepeatedField_deep_copy(VALUE _self) { RepeatedField* self = ruby_to_RepeatedField(_self); VALUE new_rptfield = RepeatedField_new_this_type(_self); RepeatedField* new_rptfield_self = ruby_to_RepeatedField(new_rptfield); upb_fieldtype_t field_type = self->field_type; size_t elem_size = native_slot_size(field_type); size_t off = 0; RepeatedField_reserve(new_rptfield_self, self->size); for (int i = 0; i < self->size; i++, off += elem_size) { void* to_mem = (uint8_t *)new_rptfield_self->elements + off; void* from_mem = (uint8_t *)self->elements + off; native_slot_deep_copy(field_type, to_mem, from_mem); new_rptfield_self->size++; } return new_rptfield; } /* * call-seq: * RepeatedField.to_ary => array * * Used when converted implicitly into array, e.g. compared to an Array. * Also called as a fallback of Object#to_a */ VALUE RepeatedField_to_ary(VALUE _self) { RepeatedField* self = ruby_to_RepeatedField(_self); upb_fieldtype_t field_type = self->field_type; size_t elem_size = native_slot_size(field_type); size_t off = 0; VALUE ary = rb_ary_new2(self->size); for (int i = 0; i < self->size; i++, off += elem_size) { void* mem = ((uint8_t *)self->elements) + off; VALUE elem = native_slot_get(field_type, self->field_type_class, mem); rb_ary_push(ary, elem); } return ary; } /* * call-seq: * RepeatedField.==(other) => boolean * * Compares this repeated field to another. Repeated fields are equal if their * element types are equal, their lengths are equal, and each element is equal. * Elements are compared as per normal Ruby semantics, by calling their :== * methods (or performing a more efficient comparison for primitive types). * * Repeated fields with dissimilar element types are never equal, even if value * comparison (for example, between integers and floats) would have otherwise * indicated that every element has equal value. */ VALUE RepeatedField_eq(VALUE _self, VALUE _other) { RepeatedField* self; RepeatedField* other; if (_self == _other) { return Qtrue; } if (TYPE(_other) == T_ARRAY) { VALUE self_ary = RepeatedField_to_ary(_self); return rb_equal(self_ary, _other); } self = ruby_to_RepeatedField(_self); other = ruby_to_RepeatedField(_other); if (self->field_type != other->field_type || self->field_type_class != other->field_type_class || self->size != other->size) { return Qfalse; } { upb_fieldtype_t field_type = self->field_type; size_t elem_size = native_slot_size(field_type); size_t off = 0; for (int i = 0; i < self->size; i++, off += elem_size) { void* self_mem = ((uint8_t *)self->elements) + off; void* other_mem = ((uint8_t *)other->elements) + off; if (!native_slot_eq(field_type, self_mem, other_mem)) { return Qfalse; } } return Qtrue; } } /* * call-seq: * RepeatedField.hash => hash_value * * Returns a hash value computed from this repeated field's elements. */ VALUE RepeatedField_hash(VALUE _self) { RepeatedField* self = ruby_to_RepeatedField(_self); st_index_t h = rb_hash_start(0); VALUE hash_sym = rb_intern("hash"); upb_fieldtype_t field_type = self->field_type; VALUE field_type_class = self->field_type_class; size_t elem_size = native_slot_size(field_type); size_t off = 0; for (int i = 0; i < self->size; i++, off += elem_size) { void* mem = ((uint8_t *)self->elements) + off; VALUE elem = native_slot_get(field_type, field_type_class, mem); h = rb_hash_uint(h, NUM2LONG(rb_funcall(elem, hash_sym, 0))); } h = rb_hash_end(h); return INT2FIX(h); } /* * call-seq: * RepeatedField.+(other) => repeated field * * Returns a new repeated field that contains the concatenated list of this * repeated field's elements and other's elements. The other (second) list may * be either another repeated field or a Ruby array. */ VALUE RepeatedField_plus(VALUE _self, VALUE list) { VALUE dupped = RepeatedField_dup(_self); if (TYPE(list) == T_ARRAY) { for (int i = 0; i < RARRAY_LEN(list); i++) { VALUE elem = rb_ary_entry(list, i); RepeatedField_push(dupped, elem); } } else if (RB_TYPE_P(list, T_DATA) && RTYPEDDATA_P(list) && RTYPEDDATA_TYPE(list) == &RepeatedField_type) { RepeatedField* self = ruby_to_RepeatedField(_self); RepeatedField* list_rptfield = ruby_to_RepeatedField(list); if (self->field_type != list_rptfield->field_type || self->field_type_class != list_rptfield->field_type_class) { rb_raise(rb_eArgError, "Attempt to append RepeatedField with different element type."); } for (int i = 0; i < list_rptfield->size; i++) { void* mem = RepeatedField_index_native(list, i); RepeatedField_push_native(dupped, mem); } } else { rb_raise(rb_eArgError, "Unknown type appending to RepeatedField"); } return dupped; } /* * call-seq: * RepeatedField.concat(other) => self * * concats the passed in array to self. Returns a Ruby array. */ VALUE RepeatedField_concat(VALUE _self, VALUE list) { Check_Type(list, T_ARRAY); for (int i = 0; i < RARRAY_LEN(list); i++) { RepeatedField_push(_self, rb_ary_entry(list, i)); } return _self; } void validate_type_class(upb_fieldtype_t type, VALUE klass) { if (rb_ivar_get(klass, descriptor_instancevar_interned) == Qnil) { rb_raise(rb_eArgError, "Type class has no descriptor. Please pass a " "class or enum as returned by the DescriptorPool."); } if (type == UPB_TYPE_MESSAGE) { VALUE desc = rb_ivar_get(klass, descriptor_instancevar_interned); if (!RB_TYPE_P(desc, T_DATA) || !RTYPEDDATA_P(desc) || RTYPEDDATA_TYPE(desc) != &_Descriptor_type) { rb_raise(rb_eArgError, "Descriptor has an incorrect type."); } if (rb_get_alloc_func(klass) != &Message_alloc) { rb_raise(rb_eArgError, "Message class was not returned by the DescriptorPool."); } } else if (type == UPB_TYPE_ENUM) { VALUE enumdesc = rb_ivar_get(klass, descriptor_instancevar_interned); if (!RB_TYPE_P(enumdesc, T_DATA) || !RTYPEDDATA_P(enumdesc) || RTYPEDDATA_TYPE(enumdesc) != &_EnumDescriptor_type) { rb_raise(rb_eArgError, "Descriptor has an incorrect type."); } } } void RepeatedField_init_args(int argc, VALUE* argv, VALUE _self) { RepeatedField* self = ruby_to_RepeatedField(_self); VALUE ary = Qnil; if (argc < 1) { rb_raise(rb_eArgError, "Expected at least 1 argument."); } self->field_type = ruby_to_fieldtype(argv[0]); if (self->field_type == UPB_TYPE_MESSAGE || self->field_type == UPB_TYPE_ENUM) { if (argc < 2) { rb_raise(rb_eArgError, "Expected at least 2 arguments for message/enum."); } self->field_type_class = argv[1]; if (argc > 2) { ary = argv[2]; } validate_type_class(self->field_type, self->field_type_class); } else { if (argc > 2) { rb_raise(rb_eArgError, "Too many arguments: expected 1 or 2."); } if (argc > 1) { ary = argv[1]; } } if (ary != Qnil) { if (!RB_TYPE_P(ary, T_ARRAY)) { rb_raise(rb_eArgError, "Expected array as initialize argument"); } for (int i = 0; i < RARRAY_LEN(ary); i++) { RepeatedField_push(_self, rb_ary_entry(ary, i)); } } } // Mark, free, alloc, init and class setup functions. void RepeatedField_mark(void* _self) { RepeatedField* self = (RepeatedField*)_self; upb_fieldtype_t field_type = self->field_type; int element_size = native_slot_size(field_type); rb_gc_mark(self->field_type_class); for (int i = 0; i < self->size; i++) { void* memory = (((uint8_t *)self->elements) + i * element_size); native_slot_mark(self->field_type, memory); } } void RepeatedField_free(void* _self) { RepeatedField* self = (RepeatedField*)_self; xfree(self->elements); xfree(self); } /* * call-seq: * RepeatedField.new(type, type_class = nil, initial_elems = []) * * Creates a new repeated field. The provided type must be a Ruby symbol, and * can take on the same values as those accepted by FieldDescriptor#type=. If * the type is :message or :enum, type_class must be non-nil, and must be the * Ruby class or module returned by Descriptor#msgclass or * EnumDescriptor#enummodule, respectively. An initial list of elements may also * be provided. */ VALUE RepeatedField_alloc(VALUE klass) { RepeatedField* self = ALLOC(RepeatedField); self->elements = NULL; self->size = 0; self->capacity = 0; self->field_type = -1; self->field_type_class = Qnil; return TypedData_Wrap_Struct(klass, &RepeatedField_type, self); } VALUE RepeatedField_init(int argc, VALUE* argv, VALUE self) { RepeatedField_init_args(argc, argv, self); return Qnil; } void RepeatedField_register(VALUE module) { VALUE klass = rb_define_class_under( module, "RepeatedField", rb_cObject); rb_define_alloc_func(klass, RepeatedField_alloc); rb_gc_register_address(&cRepeatedField); cRepeatedField = klass; rb_define_method(klass, "initialize", RepeatedField_init, -1); rb_define_method(klass, "each", RepeatedField_each, 0); rb_define_method(klass, "[]", RepeatedField_index, -1); rb_define_method(klass, "at", RepeatedField_index, -1); rb_define_method(klass, "[]=", RepeatedField_index_set, 2); rb_define_method(klass, "push", RepeatedField_push_vararg, -2); rb_define_method(klass, "<<", RepeatedField_push, 1); rb_define_private_method(klass, "pop_one", RepeatedField_pop_one, 0); rb_define_method(klass, "replace", RepeatedField_replace, 1); rb_define_method(klass, "clear", RepeatedField_clear, 0); rb_define_method(klass, "length", RepeatedField_length, 0); rb_define_method(klass, "size", RepeatedField_length, 0); rb_define_method(klass, "dup", RepeatedField_dup, 0); // Also define #clone so that we don't inherit Object#clone. rb_define_method(klass, "clone", RepeatedField_dup, 0); rb_define_method(klass, "==", RepeatedField_eq, 1); rb_define_method(klass, "to_ary", RepeatedField_to_ary, 0); rb_define_method(klass, "hash", RepeatedField_hash, 0); rb_define_method(klass, "+", RepeatedField_plus, 1); rb_define_method(klass, "concat", RepeatedField_concat, 1); rb_include_module(klass, rb_mEnumerable); }