/*********************************************************************/ /* Copyright 2009, 2010 The University of Texas at Austin. */ /* All rights reserved. */ /* */ /* Redistribution and use in source and binary forms, with or */ /* without modification, are permitted provided that the following */ /* conditions are met: */ /* */ /* 1. Redistributions of source code must retain the above */ /* copyright notice, this list of conditions and the following */ /* disclaimer. */ /* */ /* 2. Redistributions in binary form must reproduce the above */ /* copyright notice, this list of conditions and the following */ /* disclaimer in the documentation and/or other materials */ /* provided with the distribution. */ /* */ /* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */ /* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */ /* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */ /* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */ /* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */ /* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */ /* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */ /* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */ /* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */ /* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */ /* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */ /* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */ /* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */ /* POSSIBILITY OF SUCH DAMAGE. */ /* */ /* The views and conclusions contained in the software and */ /* documentation are those of the authors and should not be */ /* interpreted as representing official policies, either expressed */ /* or implied, of The University of Texas at Austin. */ /*********************************************************************/ #include #include #include "common.h" #ifndef TRANSA #if !defined(CONJ) && !defined(XCONJ) #define GEMV GEMV_N #elif defined(CONJ) && !defined(XCONJ) #define GEMV GEMV_R #elif !defined(CONJ) && defined(XCONJ) #define GEMV GEMV_O #else #define GEMV GEMV_S #endif #else #if !defined(CONJ) && !defined(XCONJ) #define GEMV GEMV_T #elif defined(CONJ) && !defined(XCONJ) #define GEMV GEMV_C #elif !defined(CONJ) && defined(XCONJ) #define GEMV GEMV_U #else #define GEMV GEMV_D #endif #endif #ifndef TRANSA #define Y_DUMMY_NUM 1024 static FLOAT y_dummy[Y_DUMMY_NUM]; #endif static int gemv_kernel(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *dummy1, FLOAT *buffer, BLASLONG pos){ FLOAT *a, *x, *y; BLASLONG lda, incx, incy; BLASLONG m_from, m_to, n_from, n_to; a = (FLOAT *)args -> a; x = (FLOAT *)args -> b; y = (FLOAT *)args -> c; lda = args -> lda; incx = args -> ldb; incy = args -> ldc; m_from = 0; m_to = args -> m; if (range_m) { m_from = *(range_m + 0); m_to = *(range_m + 1); a += m_from * COMPSIZE; #ifndef TRANSA y += m_from * incy * COMPSIZE; #endif } n_from = 0; n_to = args -> n; if (range_n) { n_from = *(range_n + 0); n_to = *(range_n + 1); a += n_from * lda * COMPSIZE; #ifdef TRANSA y += n_from * incy * COMPSIZE; #else //for split matrix row (n) direction and vector x of gemv_n x += n_from * incx * COMPSIZE; //store partial result for every thread y += (m_to - m_from) * 1 * COMPSIZE * pos; #endif } //fprintf(stderr, "M_From = %d M_To = %d N_From = %d N_To = %d POS=%d\n", m_from, m_to, n_from, n_to, pos); GEMV(m_to - m_from, n_to - n_from, 0, *((FLOAT *)args -> alpha + 0), #ifdef COMPLEX *((FLOAT *)args -> alpha + 1), #endif a, lda, x, incx, y, incy, buffer); return 0; } #ifndef COMPLEX int CNAME(BLASLONG m, BLASLONG n, FLOAT alpha, FLOAT *a, BLASLONG lda, FLOAT *x, BLASLONG incx, FLOAT *y, BLASLONG incy, FLOAT *buffer, int nthreads){ #else int CNAME(BLASLONG m, BLASLONG n, FLOAT *alpha, FLOAT *a, BLASLONG lda, FLOAT *x, BLASLONG incx, FLOAT *y, BLASLONG incy, FLOAT *buffer, int nthreads){ #endif blas_arg_t args; blas_queue_t queue[MAX_CPU_NUMBER]; BLASLONG range[MAX_CPU_NUMBER + 1]; BLASLONG width, i, num_cpu; #ifndef TRANSA int split_x=0; #endif #ifdef SMP #ifndef COMPLEX #ifdef XDOUBLE int mode = BLAS_XDOUBLE | BLAS_REAL; #elif defined(DOUBLE) int mode = BLAS_DOUBLE | BLAS_REAL; #else int mode = BLAS_SINGLE | BLAS_REAL; #endif #else #ifdef XDOUBLE int mode = BLAS_XDOUBLE | BLAS_COMPLEX; #elif defined(DOUBLE) int mode = BLAS_DOUBLE | BLAS_COMPLEX; #else int mode = BLAS_SINGLE | BLAS_COMPLEX; #endif #endif #endif args.m = m; args.n = n; args.a = (void *)a; args.b = (void *)x; args.c = (void *)y; args.lda = lda; args.ldb = incx; args.ldc = incy; #ifndef COMPLEX args.alpha = (void *)α #else args.alpha = (void *) alpha; #endif num_cpu = 0; range[0] = 0; #ifndef TRANSA i = m; #else i = n; #endif while (i > 0){ width = blas_quickdivide(i + nthreads - num_cpu - 1, nthreads - num_cpu); if (width < 4) width = 4; if (i < width) width = i; range[num_cpu + 1] = range[num_cpu] + width; queue[num_cpu].mode = mode; queue[num_cpu].routine = gemv_kernel; queue[num_cpu].args = &args; #ifndef TRANSA queue[num_cpu].range_m = &range[num_cpu]; queue[num_cpu].range_n = NULL; #else queue[num_cpu].range_m = NULL; queue[num_cpu].range_n = &range[num_cpu]; #endif queue[num_cpu].sa = NULL; queue[num_cpu].sb = NULL; queue[num_cpu].next = &queue[num_cpu + 1]; num_cpu ++; i -= width; } #ifndef TRANSA //try to split matrix on row direction and x. //Then, reduction. if (num_cpu < nthreads) { //too small to split or bigger than the y_dummy buffer. double MN = (double) m * (double) n; if ( MN <= (24.0 * 24.0 * (double) (GEMM_MULTITHREAD_THRESHOLD*GEMM_MULTITHREAD_THRESHOLD)) || m*COMPSIZE*nthreads > Y_DUMMY_NUM) goto Outer; num_cpu = 0; range[0] = 0; memset(y_dummy, 0, sizeof(FLOAT) * m * COMPSIZE * nthreads); args.ldc = 1; args.c = (void *)y_dummy; //split on row (n) and x i=n; split_x=1; while (i > 0){ width = blas_quickdivide(i + nthreads - num_cpu - 1, nthreads - num_cpu); if (width < 4) width = 4; if (i < width) width = i; range[num_cpu + 1] = range[num_cpu] + width; queue[num_cpu].mode = mode; queue[num_cpu].routine = gemv_kernel; queue[num_cpu].args = &args; queue[num_cpu].position = num_cpu; queue[num_cpu].range_m = NULL; queue[num_cpu].range_n = &range[num_cpu]; queue[num_cpu].sa = NULL; queue[num_cpu].sb = NULL; queue[num_cpu].next = &queue[num_cpu + 1]; num_cpu ++; i -= width; } } Outer: #endif if (num_cpu) { queue[0].sa = NULL; queue[0].sb = buffer; queue[num_cpu - 1].next = NULL; exec_blas(num_cpu, queue); } #ifndef TRANSA if(split_x==1){ //reduction for(i=0; i