/*********************************************************************/ /* Copyright 2009, 2010 The University of Texas at Austin. */ /* All rights reserved. */ /* */ /* Redistribution and use in source and binary forms, with or */ /* without modification, are permitted provided that the following */ /* conditions are met: */ /* */ /* 1. Redistributions of source code must retain the above */ /* copyright notice, this list of conditions and the following */ /* disclaimer. */ /* */ /* 2. Redistributions in binary form must reproduce the above */ /* copyright notice, this list of conditions and the following */ /* disclaimer in the documentation and/or other materials */ /* provided with the distribution. */ /* */ /* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */ /* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */ /* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */ /* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */ /* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */ /* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */ /* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */ /* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */ /* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */ /* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */ /* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */ /* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */ /* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */ /* POSSIBILITY OF SUCH DAMAGE. */ /* */ /* The views and conclusions contained in the software and */ /* documentation are those of the authors and should not be */ /* interpreted as representing official policies, either expressed */ /* or implied, of The University of Texas at Austin. */ /*********************************************************************/ #include #include "common.h" #ifndef BETA_OPERATION #define BETA_OPERATION(M_FROM, M_TO, N_FROM, N_TO, BETA, C, LDC) \ GEMM_BETA((M_TO) - (M_FROM), (N_TO - N_FROM), 0, \ BETA[0], BETA[1], NULL, 0, NULL, 0, \ (FLOAT *)(C) + (M_FROM) + (N_FROM) * (LDC) * COMPSIZE, LDC) #endif #ifndef ICOPYB_OPERATION #if defined(NN) || defined(NT) || defined(NC) || defined(NR) || \ defined(RN) || defined(RT) || defined(RC) || defined(RR) #define ICOPYB_OPERATION(M, N, A, LDA, X, Y, BUFFER) \ GEMM3M_ITCOPYB(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER) #else #define ICOPYB_OPERATION(M, N, A, LDA, X, Y, BUFFER) \ GEMM3M_INCOPYB(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER) #endif #endif #ifndef ICOPYR_OPERATION #if defined(NN) || defined(NT) || defined(NC) || defined(NR) || \ defined(RN) || defined(RT) || defined(RC) || defined(RR) #define ICOPYR_OPERATION(M, N, A, LDA, X, Y, BUFFER) \ GEMM3M_ITCOPYR(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER) #else #define ICOPYR_OPERATION(M, N, A, LDA, X, Y, BUFFER) \ GEMM3M_INCOPYR(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER) #endif #endif #ifndef ICOPYI_OPERATION #if defined(NN) || defined(NT) || defined(NC) || defined(NR) || \ defined(RN) || defined(RT) || defined(RC) || defined(RR) #define ICOPYI_OPERATION(M, N, A, LDA, X, Y, BUFFER) \ GEMM3M_ITCOPYI(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER) #else #define ICOPYI_OPERATION(M, N, A, LDA, X, Y, BUFFER) \ GEMM3M_INCOPYI(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER) #endif #endif #ifndef OCOPYB_OPERATION #if defined(NN) || defined(TN) || defined(CN) || defined(RN) || \ defined(NR) || defined(TR) || defined(CR) || defined(RR) #define OCOPYB_OPERATION(M, N, A, LDA, ALPHA_R, ALPHA_I, X, Y, BUFFER) \ GEMM3M_ONCOPYB(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, ALPHA_R, ALPHA_I, BUFFER) #else #define OCOPYB_OPERATION(M, N, A, LDA, ALPHA_R, ALPHA_I, X, Y, BUFFER) \ GEMM3M_OTCOPYB(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, ALPHA_R, ALPHA_I, BUFFER) #endif #endif #ifndef OCOPYR_OPERATION #if defined(NN) || defined(TN) || defined(CN) || defined(RN) || \ defined(NR) || defined(TR) || defined(CR) || defined(RR) #define OCOPYR_OPERATION(M, N, A, LDA, ALPHA_R, ALPHA_I, X, Y, BUFFER) \ GEMM3M_ONCOPYR(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, ALPHA_R, ALPHA_I, BUFFER) #else #define OCOPYR_OPERATION(M, N, A, LDA, ALPHA_R, ALPHA_I, X, Y, BUFFER) \ GEMM3M_OTCOPYR(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, ALPHA_R, ALPHA_I, BUFFER) #endif #endif #ifndef OCOPYI_OPERATION #if defined(NN) || defined(TN) || defined(CN) || defined(RN) || \ defined(NR) || defined(TR) || defined(CR) || defined(RR) #define OCOPYI_OPERATION(M, N, A, LDA, ALPHA_R, ALPHA_I, X, Y, BUFFER) \ GEMM3M_ONCOPYI(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, ALPHA_R, ALPHA_I, BUFFER) #else #define OCOPYI_OPERATION(M, N, A, LDA, ALPHA_R, ALPHA_I, X, Y, BUFFER) \ GEMM3M_OTCOPYI(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, ALPHA_R, ALPHA_I, BUFFER) #endif #endif #ifndef KERNEL_FUNC #define KERNEL_FUNC GEMM3M_KERNEL #endif #ifndef KERNEL_OPERATION #define KERNEL_OPERATION(M, N, K, ALPHA_R, ALPHA_I, SA, SB, C, LDC, X, Y) \ KERNEL_FUNC(M, N, K, ALPHA_R, ALPHA_I, SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC) #endif #ifndef A #define A args -> a #endif #ifndef LDA #define LDA args -> lda #endif #ifndef B #define B args -> b #endif #ifndef LDB #define LDB args -> ldb #endif #ifndef C #define C args -> c #endif #ifndef LDC #define LDC args -> ldc #endif #ifndef M #define M args -> m #endif #ifndef N #define N args -> n #endif #ifndef K #define K args -> k #endif #if defined(NN) || defined(NT) || defined(TN) || defined(TT) #define ALPHA1 ONE #define ALPHA2 ONE #define ALPHA5 ZERO #define ALPHA6 ONE #define ALPHA7 ONE #define ALPHA8 ZERO #define ALPHA11 ONE #define ALPHA12 -ONE #define ALPHA13 ZERO #define ALPHA14 ONE #define ALPHA17 -ONE #define ALPHA18 -ONE #endif #if defined(NR) || defined(NC) || defined(TR) || defined(TC) #define ALPHA1 ONE #define ALPHA2 ONE #define ALPHA5 ONE #define ALPHA6 ZERO #define ALPHA7 ZERO #define ALPHA8 ONE #define ALPHA11 -ONE #define ALPHA12 -ONE #define ALPHA13 ONE #define ALPHA14 ZERO #define ALPHA17 -ONE #define ALPHA18 ONE #endif #if defined(RN) || defined(RT) || defined(CN) || defined(CT) #define ALPHA1 ONE #define ALPHA2 ONE #define ALPHA5 ONE #define ALPHA6 ZERO #define ALPHA7 ZERO #define ALPHA8 ONE #define ALPHA11 -ONE #define ALPHA12 ONE #define ALPHA13 ONE #define ALPHA14 ZERO #define ALPHA17 -ONE #define ALPHA18 -ONE #endif #if defined(RR) || defined(RC) || defined(CR) || defined(CC) #define ALPHA1 ONE #define ALPHA2 ONE #define ALPHA5 ZERO #define ALPHA6 -ONE #define ALPHA7 ONE #define ALPHA8 ZERO #define ALPHA11 ONE #define ALPHA12 ONE #define ALPHA13 ZERO #define ALPHA14 ONE #define ALPHA17 -ONE #define ALPHA18 ONE #endif #ifdef TIMING #define START_RPCC() rpcc_counter = rpcc() #define STOP_RPCC(COUNTER) COUNTER += rpcc() - rpcc_counter #else #define START_RPCC() #define STOP_RPCC(COUNTER) #endif int CNAME(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG dummy){ BLASLONG k, lda, ldb, ldc; FLOAT *alpha, *beta; FLOAT *a, *b, *c; BLASLONG m_from, m_to, n_from, n_to; BLASLONG ls, is, js, jjs; BLASLONG min_l, min_i, min_j, min_jj; #ifdef TIMING BLASULONG rpcc_counter; BLASULONG BLASLONG innercost = 0; BLASULONG BLASLONG outercost = 0; BLASULONG BLASLONG kernelcost = 0; double total; #endif k = K; a = (FLOAT *)A; b = (FLOAT *)B; c = (FLOAT *)C; lda = LDA; ldb = LDB; ldc = LDC; alpha = (FLOAT *)args -> alpha; beta = (FLOAT *)args -> beta; m_from = 0; m_to = M; if (range_m) { m_from = *(((BLASLONG *)range_m) + 0); m_to = *(((BLASLONG *)range_m) + 1); } n_from = 0; n_to = N; if (range_n) { n_from = *(((BLASLONG *)range_n) + 0); n_to = *(((BLASLONG *)range_n) + 1); } if (beta) { #ifndef COMPLEX if (beta[0] != ONE) #else if ((beta[0] != ONE) || (beta[1] != ZERO)) #endif BETA_OPERATION(m_from, m_to, n_from, n_to, beta, c, ldc); } if ((k == 0) || (alpha == NULL)) return 0; if ((alpha[0] == ZERO) #ifdef COMPLEX && (alpha[1] == ZERO) #endif ) return 0; #if 0 printf("GEMM: M_from : %ld M_to : %ld N_from : %ld N_to : %ld k : %ld\n", m_from, m_to, n_from, n_to, k); printf("GEMM: P = %4ld Q = %4ld R = %4ld\n", (BLASLONG)GEMM3M_P, (BLASLONG)GEMM3M_Q, (BLASLONG)GEMM3M_R); printf("GEMM: SA .. %p SB .. %p\n", sa, sb); #endif #ifdef TIMING innercost = 0; outercost = 0; kernelcost = 0; #endif for(js = n_from; js < n_to; js += GEMM3M_R){ min_j = n_to - js; if (min_j > GEMM3M_R) min_j = GEMM3M_R; for(ls = 0; ls < k; ls += min_l){ min_l = k - ls; if (min_l >= GEMM3M_Q * 2) { min_l = GEMM3M_Q; } else { if (min_l > GEMM3M_Q) { min_l = (min_l + 1) / 2; #ifdef UNROLL_X min_l = (min_l + UNROLL_X - 1) & ~(UNROLL_X - 1); #endif } } min_i = m_to - m_from; if (min_i >= GEMM3M_P * 2) { min_i = GEMM3M_P; } else { if (min_i > GEMM3M_P) { min_i = (min_i / 2 + GEMM3M_UNROLL_M - 1) & ~(GEMM3M_UNROLL_M - 1); } } START_RPCC(); ICOPYB_OPERATION(min_l, min_i, a, lda, ls, m_from, sa); STOP_RPCC(innercost); for(jjs = js; jjs < js + min_j; jjs += min_jj){ min_jj = min_j + js - jjs; if (min_jj > GEMM3M_UNROLL_N) min_jj = GEMM3M_UNROLL_N; START_RPCC(); #if defined(NN) || defined(NT) || defined(TN) || defined(TT) || defined(RN) || defined(RT) || defined(CN) || defined(CT) OCOPYB_OPERATION(min_l, min_jj, b, ldb, alpha[0], alpha[1], ls, jjs, sb + min_l * (jjs - js)); #else OCOPYB_OPERATION(min_l, min_jj, b, ldb, alpha[0], -alpha[1], ls, jjs, sb + min_l * (jjs - js)); #endif STOP_RPCC(outercost); START_RPCC(); KERNEL_OPERATION(min_i, min_jj, min_l, ALPHA5, ALPHA6, sa, sb + min_l * (jjs - js), c, ldc, m_from, jjs); STOP_RPCC(kernelcost); } for(is = m_from + min_i; is < m_to; is += min_i){ min_i = m_to - is; if (min_i >= GEMM3M_P * 2) { min_i = GEMM3M_P; } else if (min_i > GEMM3M_P) { min_i = (min_i / 2 + GEMM3M_UNROLL_M - 1) & ~(GEMM3M_UNROLL_M - 1); } START_RPCC(); ICOPYB_OPERATION(min_l, min_i, a, lda, ls, is, sa); STOP_RPCC(innercost); START_RPCC(); KERNEL_OPERATION(min_i, min_j, min_l, ALPHA5, ALPHA6, sa, sb, c, ldc, is, js); STOP_RPCC(kernelcost); } min_i = m_to - m_from; if (min_i >= GEMM3M_P * 2) { min_i = GEMM3M_P; } else { if (min_i > GEMM3M_P) { min_i = (min_i / 2 + GEMM3M_UNROLL_M - 1) & ~(GEMM3M_UNROLL_M - 1); } } START_RPCC(); ICOPYR_OPERATION(min_l, min_i, a, lda, ls, m_from, sa); STOP_RPCC(innercost); for(jjs = js; jjs < js + min_j; jjs += min_jj){ min_jj = min_j + js - jjs; if (min_jj > GEMM3M_UNROLL_N) min_jj = GEMM3M_UNROLL_N; START_RPCC(); #if defined(NN) || defined(NT) || defined(TN) || defined(TT) OCOPYR_OPERATION(min_l, min_jj, b, ldb, alpha[0], alpha[1], ls, jjs, sb + min_l * (jjs - js)); #elif defined(RR) || defined(RC) || defined(CR) || defined(CC) OCOPYR_OPERATION(min_l, min_jj, b, ldb, alpha[0], -alpha[1], ls, jjs, sb + min_l * (jjs - js)); #elif defined(RN) || defined(RT) || defined(CN) || defined(CT) OCOPYI_OPERATION(min_l, min_jj, b, ldb, alpha[0], alpha[1], ls, jjs, sb + min_l * (jjs - js)); #else OCOPYI_OPERATION(min_l, min_jj, b, ldb, alpha[0], -alpha[1], ls, jjs, sb + min_l * (jjs - js)); #endif STOP_RPCC(outercost); START_RPCC(); KERNEL_OPERATION(min_i, min_jj, min_l, ALPHA11, ALPHA12, sa, sb + min_l * (jjs - js), c, ldc, m_from, jjs); STOP_RPCC(kernelcost); } for(is = m_from + min_i; is < m_to; is += min_i){ min_i = m_to - is; if (min_i >= GEMM3M_P * 2) { min_i = GEMM3M_P; } else if (min_i > GEMM3M_P) { min_i = (min_i / 2 + GEMM3M_UNROLL_M - 1) & ~(GEMM3M_UNROLL_M - 1); } START_RPCC(); ICOPYR_OPERATION(min_l, min_i, a, lda, ls, is, sa); STOP_RPCC(innercost); START_RPCC(); KERNEL_OPERATION(min_i, min_j, min_l, ALPHA11, ALPHA12, sa, sb, c, ldc, is, js); STOP_RPCC(kernelcost); } min_i = m_to - m_from; if (min_i >= GEMM3M_P * 2) { min_i = GEMM3M_P; } else { if (min_i > GEMM3M_P) { min_i = (min_i / 2 + GEMM3M_UNROLL_M - 1) & ~(GEMM3M_UNROLL_M - 1); } } START_RPCC(); ICOPYI_OPERATION(min_l, min_i, a, lda, ls, m_from, sa); STOP_RPCC(innercost); for(jjs = js; jjs < js + min_j; jjs += min_jj){ min_jj = min_j + js - jjs; if (min_jj > GEMM3M_UNROLL_N) min_jj = GEMM3M_UNROLL_N; START_RPCC(); #if defined(NN) || defined(NT) || defined(TN) || defined(TT) OCOPYI_OPERATION(min_l, min_jj, b, ldb, alpha[0], alpha[1], ls, jjs, sb + min_l * (jjs - js)); #elif defined(RR) || defined(RC) || defined(CR) || defined(CC) OCOPYI_OPERATION(min_l, min_jj, b, ldb, alpha[0], -alpha[1], ls, jjs, sb + min_l * (jjs - js)); #elif defined(RN) || defined(RT) || defined(CN) || defined(CT) OCOPYR_OPERATION(min_l, min_jj, b, ldb, alpha[0], alpha[1], ls, jjs, sb + min_l * (jjs - js)); #else OCOPYR_OPERATION(min_l, min_jj, b, ldb, alpha[0], -alpha[1], ls, jjs, sb + min_l * (jjs - js)); #endif STOP_RPCC(outercost); START_RPCC(); KERNEL_OPERATION(min_i, min_jj, min_l, ALPHA17, ALPHA18, sa, sb + min_l * (jjs - js), c, ldc, m_from, jjs); STOP_RPCC(kernelcost); } for(is = m_from + min_i; is < m_to; is += min_i){ min_i = m_to - is; if (min_i >= GEMM3M_P * 2) { min_i = GEMM3M_P; } else if (min_i > GEMM3M_P) { min_i = (min_i / 2 + GEMM3M_UNROLL_M - 1) & ~(GEMM3M_UNROLL_M - 1); } START_RPCC(); ICOPYI_OPERATION(min_l, min_i, a, lda, ls, is, sa); STOP_RPCC(innercost); START_RPCC(); KERNEL_OPERATION(min_i, min_j, min_l, ALPHA17, ALPHA18, sa, sb, c, ldc, is, js); STOP_RPCC(kernelcost); } } /* end of js */ } /* end of ls */ #ifdef TIMING total = (double)outercost + (double)innercost + (double)kernelcost; printf( "Copy A : %5.2f Copy B: %5.2f Kernel : %5.2f\n", innercost / total * 100., outercost / total * 100., kernelcost / total * 100.); printf( " Total %10.3f%% %10.3f MFlops\n", ((double)(m_to - m_from) * (double)(n_to - n_from) * (double)k) / (double)kernelcost / 2 * 100, 2400. * (2. * (double)(m_to - m_from) * (double)(n_to - n_from) * (double)k) / (double)kernelcost); #endif return 0; }