/*********************************************************************/ /* Copyright 2009, 2010 The University of Texas at Austin. */ /* All rights reserved. */ /* */ /* Redistribution and use in source and binary forms, with or */ /* without modification, are permitted provided that the following */ /* conditions are met: */ /* */ /* 1. Redistributions of source code must retain the above */ /* copyright notice, this list of conditions and the following */ /* disclaimer. */ /* */ /* 2. Redistributions in binary form must reproduce the above */ /* copyright notice, this list of conditions and the following */ /* disclaimer in the documentation and/or other materials */ /* provided with the distribution. */ /* */ /* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */ /* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */ /* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */ /* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */ /* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */ /* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */ /* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */ /* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */ /* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */ /* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */ /* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */ /* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */ /* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */ /* POSSIBILITY OF SUCH DAMAGE. */ /* */ /* The views and conclusions contained in the software and */ /* documentation are those of the authors and should not be */ /* interpreted as representing official policies, either expressed */ /* or implied, of The University of Texas at Austin. */ /*********************************************************************/ #ifndef CACHE_LINE_SIZE #define CACHE_LINE_SIZE 8 #endif #ifndef DIVIDE_RATE #define DIVIDE_RATE 2 #endif #ifndef SWITCH_RATIO #define SWITCH_RATIO 2 #endif //The array of job_t may overflow the stack. //Instead, use malloc to alloc job_t. #if MAX_CPU_NUMBER > BLAS3_MEM_ALLOC_THRESHOLD #define USE_ALLOC_HEAP #endif #ifndef GEMM_LOCAL #if defined(NN) #define GEMM_LOCAL GEMM_NN #elif defined(NT) #define GEMM_LOCAL GEMM_NT #elif defined(NR) #define GEMM_LOCAL GEMM_NR #elif defined(NC) #define GEMM_LOCAL GEMM_NC #elif defined(TN) #define GEMM_LOCAL GEMM_TN #elif defined(TT) #define GEMM_LOCAL GEMM_TT #elif defined(TR) #define GEMM_LOCAL GEMM_TR #elif defined(TC) #define GEMM_LOCAL GEMM_TC #elif defined(RN) #define GEMM_LOCAL GEMM_RN #elif defined(RT) #define GEMM_LOCAL GEMM_RT #elif defined(RR) #define GEMM_LOCAL GEMM_RR #elif defined(RC) #define GEMM_LOCAL GEMM_RC #elif defined(CN) #define GEMM_LOCAL GEMM_CN #elif defined(CT) #define GEMM_LOCAL GEMM_CT #elif defined(CR) #define GEMM_LOCAL GEMM_CR #elif defined(CC) #define GEMM_LOCAL GEMM_CC #endif #endif typedef struct { volatile BLASLONG working[MAX_CPU_NUMBER][CACHE_LINE_SIZE * DIVIDE_RATE]; } job_t; #ifndef BETA_OPERATION #ifndef COMPLEX #define BETA_OPERATION(M_FROM, M_TO, N_FROM, N_TO, BETA, C, LDC) \ GEMM_BETA((M_TO) - (M_FROM), (N_TO - N_FROM), 0, \ BETA[0], NULL, 0, NULL, 0, \ (FLOAT *)(C) + ((M_FROM) + (N_FROM) * (LDC)) * COMPSIZE, LDC) #else #define BETA_OPERATION(M_FROM, M_TO, N_FROM, N_TO, BETA, C, LDC) \ GEMM_BETA((M_TO) - (M_FROM), (N_TO - N_FROM), 0, \ BETA[0], BETA[1], NULL, 0, NULL, 0, \ (FLOAT *)(C) + ((M_FROM) + (N_FROM) * (LDC)) * COMPSIZE, LDC) #endif #endif #ifndef ICOPY_OPERATION #if defined(NN) || defined(NT) || defined(NC) || defined(NR) || \ defined(RN) || defined(RT) || defined(RC) || defined(RR) #define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ITCOPY(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER); #else #define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_INCOPY(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER); #endif #endif #ifndef OCOPY_OPERATION #if defined(NN) || defined(TN) || defined(CN) || defined(RN) || \ defined(NR) || defined(TR) || defined(CR) || defined(RR) #define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ONCOPY(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER); #else #define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_OTCOPY(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER); #endif #endif #ifndef KERNEL_FUNC #if defined(NN) || defined(NT) || defined(TN) || defined(TT) #define KERNEL_FUNC GEMM_KERNEL_N #endif #if defined(CN) || defined(CT) || defined(RN) || defined(RT) #define KERNEL_FUNC GEMM_KERNEL_L #endif #if defined(NC) || defined(TC) || defined(NR) || defined(TR) #define KERNEL_FUNC GEMM_KERNEL_R #endif #if defined(CC) || defined(CR) || defined(RC) || defined(RR) #define KERNEL_FUNC GEMM_KERNEL_B #endif #endif #ifndef KERNEL_OPERATION #ifndef COMPLEX #define KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, C, LDC, X, Y) \ KERNEL_FUNC(M, N, K, ALPHA[0], SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC) #else #define KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, C, LDC, X, Y) \ KERNEL_FUNC(M, N, K, ALPHA[0], ALPHA[1], SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC) #endif #endif #ifndef FUSED_KERNEL_OPERATION #if defined(NN) || defined(TN) || defined(CN) || defined(RN) || \ defined(NR) || defined(TR) || defined(CR) || defined(RR) #ifndef COMPLEX #define FUSED_KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, B, LDB, C, LDC, I, J, L) \ FUSED_GEMM_KERNEL_N(M, N, K, ALPHA[0], SA, SB, \ (FLOAT *)(B) + ((L) + (J) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC) #else #define FUSED_KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, B, LDB, C, LDC, I, J, L) \ FUSED_GEMM_KERNEL_N(M, N, K, ALPHA[0], ALPHA[1], SA, SB, \ (FLOAT *)(B) + ((L) + (J) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC) #endif #else #ifndef COMPLEX #define FUSED_KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, B, LDB, C, LDC, I, J, L) \ FUSED_GEMM_KERNEL_T(M, N, K, ALPHA[0], SA, SB, \ (FLOAT *)(B) + ((J) + (L) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC) #else #define FUSED_KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, B, LDB, C, LDC, I, J, L) \ FUSED_GEMM_KERNEL_T(M, N, K, ALPHA[0], ALPHA[1], SA, SB, \ (FLOAT *)(B) + ((J) + (L) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC) #endif #endif #endif #ifndef A #define A args -> a #endif #ifndef LDA #define LDA args -> lda #endif #ifndef B #define B args -> b #endif #ifndef LDB #define LDB args -> ldb #endif #ifndef C #define C args -> c #endif #ifndef LDC #define LDC args -> ldc #endif #ifndef M #define M args -> m #endif #ifndef N #define N args -> n #endif #ifndef K #define K args -> k #endif #ifdef TIMING #define START_RPCC() rpcc_counter = rpcc() #define STOP_RPCC(COUNTER) COUNTER += rpcc() - rpcc_counter #else #define START_RPCC() #define STOP_RPCC(COUNTER) #endif static int inner_thread(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG mypos){ FLOAT *buffer[DIVIDE_RATE]; BLASLONG k, lda, ldb, ldc; BLASLONG m_from, m_to, n_from, n_to, N_from, N_to; FLOAT *alpha, *beta; FLOAT *a, *b, *c; job_t *job = (job_t *)args -> common; BLASLONG xxx, bufferside; BLASLONG ls, min_l, jjs, min_jj; BLASLONG is, min_i, div_n; BLASLONG i, current; BLASLONG l1stride; #ifdef TIMING BLASULONG rpcc_counter; BLASULONG copy_A = 0; BLASULONG copy_B = 0; BLASULONG kernel = 0; BLASULONG waiting1 = 0; BLASULONG waiting2 = 0; BLASULONG waiting3 = 0; BLASULONG waiting6[MAX_CPU_NUMBER]; BLASULONG ops = 0; for (i = 0; i < args -> nthreads; i++) waiting6[i] = 0; #endif k = K; a = (FLOAT *)A; b = (FLOAT *)B; c = (FLOAT *)C; lda = LDA; ldb = LDB; ldc = LDC; alpha = (FLOAT *)args -> alpha; beta = (FLOAT *)args -> beta; m_from = 0; m_to = M; if (range_m) { m_from = range_m[0]; m_to = range_m[1]; } n_from = 0; n_to = N; N_from = 0; N_to = N; if (range_n) { n_from = range_n[mypos + 0]; n_to = range_n[mypos + 1]; N_from = range_n[0]; N_to = range_n[args -> nthreads]; } if (beta) { #ifndef COMPLEX if (beta[0] != ONE) #else if ((beta[0] != ONE) || (beta[1] != ZERO)) #endif BETA_OPERATION(m_from, m_to, N_from, N_to, beta, c, ldc); } if ((k == 0) || (alpha == NULL)) return 0; if ((alpha[0] == ZERO) #ifdef COMPLEX && (alpha[1] == ZERO) #endif ) return 0; #if 0 fprintf(stderr, "Thread[%ld] m_from : %ld m_to : %ld n_from : %ld n_to : %ld N_from : %ld N_to : %ld\n", mypos, m_from, m_to, n_from, n_to, N_from, N_to); fprintf(stderr, "GEMM: P = %4ld Q = %4ld R = %4ld\n", (BLASLONG)GEMM_P, (BLASLONG)GEMM_Q, (BLASLONG)GEMM_R); #endif div_n = (n_to - n_from + DIVIDE_RATE - 1) / DIVIDE_RATE; buffer[0] = sb; for (i = 1; i < DIVIDE_RATE; i++) { buffer[i] = buffer[i - 1] + GEMM_Q * ((div_n + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1)) * COMPSIZE; } for(ls = 0; ls < k; ls += min_l){ min_l = k - ls; if (min_l >= GEMM_Q * 2) { min_l = GEMM_Q; } else { if (min_l > GEMM_Q) min_l = (min_l + 1) / 2; } l1stride = 1; min_i = m_to - m_from; if (min_i >= GEMM_P * 2) { min_i = GEMM_P; } else { if (min_i > GEMM_P) { min_i = (min_i / 2 + GEMM_UNROLL_M - 1) & ~(GEMM_UNROLL_M - 1); } else { if (args -> nthreads == 1) l1stride = 0; } } START_RPCC(); ICOPY_OPERATION(min_l, min_i, a, lda, ls, m_from, sa); STOP_RPCC(copy_A); div_n = (n_to - n_from + DIVIDE_RATE - 1) / DIVIDE_RATE; for (xxx = n_from, bufferside = 0; xxx < n_to; xxx += div_n, bufferside ++) { START_RPCC(); /* Make sure if no one is using buffer */ for (i = 0; i < args -> nthreads; i++) while (job[mypos].working[i][CACHE_LINE_SIZE * bufferside]) {YIELDING;}; STOP_RPCC(waiting1); #if defined(FUSED_GEMM) && !defined(TIMING) FUSED_KERNEL_OPERATION(min_i, MIN(n_to, xxx + div_n) - xxx, min_l, alpha, sa, buffer[bufferside], b, ldb, c, ldc, m_from, xxx, ls); #else for(jjs = xxx; jjs < MIN(n_to, xxx + div_n); jjs += min_jj){ min_jj = MIN(n_to, xxx + div_n) - jjs; if (min_jj >= 3*GEMM_UNROLL_N) min_jj = 3*GEMM_UNROLL_N; else if (min_jj >= 2*GEMM_UNROLL_N) min_jj = 2*GEMM_UNROLL_N; else if (min_jj > GEMM_UNROLL_N) min_jj = GEMM_UNROLL_N; START_RPCC(); OCOPY_OPERATION(min_l, min_jj, b, ldb, ls, jjs, buffer[bufferside] + min_l * (jjs - xxx) * COMPSIZE * l1stride); STOP_RPCC(copy_B); START_RPCC(); KERNEL_OPERATION(min_i, min_jj, min_l, alpha, sa, buffer[bufferside] + min_l * (jjs - xxx) * COMPSIZE * l1stride, c, ldc, m_from, jjs); STOP_RPCC(kernel); #ifdef TIMING ops += 2 * min_i * min_jj * min_l; #endif } #endif for (i = 0; i < args -> nthreads; i++) job[mypos].working[i][CACHE_LINE_SIZE * bufferside] = (BLASLONG)buffer[bufferside]; WMB; } current = mypos; do { current ++; if (current >= args -> nthreads) current = 0; div_n = (range_n[current + 1] - range_n[current] + DIVIDE_RATE - 1) / DIVIDE_RATE; for (xxx = range_n[current], bufferside = 0; xxx < range_n[current + 1]; xxx += div_n, bufferside ++) { if (current != mypos) { START_RPCC(); /* thread has to wait */ while(job[current].working[mypos][CACHE_LINE_SIZE * bufferside] == 0) {YIELDING;}; STOP_RPCC(waiting2); START_RPCC(); KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - xxx, div_n), min_l, alpha, sa, (FLOAT *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside], c, ldc, m_from, xxx); STOP_RPCC(kernel); #ifdef TIMING ops += 2 * min_i * MIN(range_n[current + 1] - xxx, div_n) * min_l; #endif } if (m_to - m_from == min_i) { job[current].working[mypos][CACHE_LINE_SIZE * bufferside] &= 0; } } } while (current != mypos); for(is = m_from + min_i; is < m_to; is += min_i){ min_i = m_to - is; if (min_i >= GEMM_P * 2) { min_i = GEMM_P; } else if (min_i > GEMM_P) { min_i = ((min_i + 1) / 2 + GEMM_UNROLL_M - 1) & ~(GEMM_UNROLL_M - 1); } START_RPCC(); ICOPY_OPERATION(min_l, min_i, a, lda, ls, is, sa); STOP_RPCC(copy_A); current = mypos; do { div_n = (range_n[current + 1] - range_n[current] + DIVIDE_RATE - 1) / DIVIDE_RATE; for (xxx = range_n[current], bufferside = 0; xxx < range_n[current + 1]; xxx += div_n, bufferside ++) { START_RPCC(); KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - xxx, div_n), min_l, alpha, sa, (FLOAT *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside], c, ldc, is, xxx); STOP_RPCC(kernel); #ifdef TIMING ops += 2 * min_i * MIN(range_n[current + 1] - xxx, div_n) * min_l; #endif if (is + min_i >= m_to) { /* Thread doesn't need this buffer any more */ job[current].working[mypos][CACHE_LINE_SIZE * bufferside] &= 0; WMB; } } current ++; if (current >= args -> nthreads) current = 0; } while (current != mypos); } } START_RPCC(); for (i = 0; i < args -> nthreads; i++) { for (xxx = 0; xxx < DIVIDE_RATE; xxx++) { while (job[mypos].working[i][CACHE_LINE_SIZE * xxx] ) {YIELDING;}; } } STOP_RPCC(waiting3); #ifdef TIMING BLASLONG waiting = waiting1 + waiting2 + waiting3; BLASLONG total = copy_A + copy_B + kernel + waiting; fprintf(stderr, "GEMM [%2ld] Copy_A : %6.2f Copy_B : %6.2f Wait1 : %6.2f Wait2 : %6.2f Wait3 : %6.2f Kernel : %6.2f", mypos, (double)copy_A /(double)total * 100., (double)copy_B /(double)total * 100., (double)waiting1 /(double)total * 100., (double)waiting2 /(double)total * 100., (double)waiting3 /(double)total * 100., (double)ops/(double)kernel / 4. * 100.); #if 0 fprintf(stderr, "GEMM [%2ld] Copy_A : %6.2ld Copy_B : %6.2ld Wait : %6.2ld\n", mypos, copy_A, copy_B, waiting); fprintf(stderr, "Waiting[%2ld] %6.2f %6.2f %6.2f\n", mypos, (double)waiting1/(double)waiting * 100., (double)waiting2/(double)waiting * 100., (double)waiting3/(double)waiting * 100.); #endif fprintf(stderr, "\n"); #endif return 0; } static int gemm_driver(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG mypos){ blas_arg_t newarg; #ifndef USE_ALLOC_HEAP job_t job[MAX_CPU_NUMBER]; #else job_t * job = NULL; #endif blas_queue_t queue[MAX_CPU_NUMBER]; BLASLONG range_M[MAX_CPU_NUMBER + 1]; BLASLONG range_N[MAX_CPU_NUMBER + 1]; BLASLONG num_cpu_m, num_cpu_n; BLASLONG nthreads = args -> nthreads; BLASLONG width, i, j, k, js; BLASLONG m, n, n_from, n_to; int mode; #ifndef COMPLEX #ifdef XDOUBLE mode = BLAS_XDOUBLE | BLAS_REAL | BLAS_NODE; #elif defined(DOUBLE) mode = BLAS_DOUBLE | BLAS_REAL | BLAS_NODE; #else mode = BLAS_SINGLE | BLAS_REAL | BLAS_NODE; #endif #else #ifdef XDOUBLE mode = BLAS_XDOUBLE | BLAS_COMPLEX | BLAS_NODE; #elif defined(DOUBLE) mode = BLAS_DOUBLE | BLAS_COMPLEX | BLAS_NODE; #else mode = BLAS_SINGLE | BLAS_COMPLEX | BLAS_NODE; #endif #endif newarg.m = args -> m; newarg.n = args -> n; newarg.k = args -> k; newarg.a = args -> a; newarg.b = args -> b; newarg.c = args -> c; newarg.lda = args -> lda; newarg.ldb = args -> ldb; newarg.ldc = args -> ldc; newarg.alpha = args -> alpha; newarg.beta = args -> beta; newarg.nthreads = args -> nthreads; #ifdef USE_ALLOC_HEAP job = (job_t*)malloc(MAX_CPU_NUMBER * sizeof(job_t)); if(job==NULL){ fprintf(stderr, "OpenBLAS: malloc failed in %s\n", __func__); exit(1); } #endif newarg.common = (void *)job; #ifdef PARAMTEST newarg.gemm_p = args -> gemm_p; newarg.gemm_q = args -> gemm_q; newarg.gemm_r = args -> gemm_r; #endif if (!range_m) { range_M[0] = 0; m = args -> m; } else { range_M[0] = range_m[0]; m = range_m[1] - range_m[0]; } num_cpu_m = 0; while (m > 0){ width = blas_quickdivide(m + nthreads - num_cpu_m - 1, nthreads - num_cpu_m); m -= width; if (m < 0) width = width + m; range_M[num_cpu_m + 1] = range_M[num_cpu_m] + width; num_cpu_m ++; } for (i = 0; i < num_cpu_m; i++) { queue[i].mode = mode; queue[i].routine = inner_thread; queue[i].args = &newarg; queue[i].range_m = &range_M[i]; queue[i].range_n = &range_N[0]; queue[i].sa = NULL; queue[i].sb = NULL; queue[i].next = &queue[i + 1]; } queue[0].sa = sa; queue[0].sb = sb; if (!range_n) { n_from = 0; n_to = args -> n; } else { n_from = range_n[0]; n_to = range_n[1]; } for(js = n_from; js < n_to; js += GEMM_R * nthreads){ n = n_to - js; if (n > GEMM_R * nthreads) n = GEMM_R * nthreads; range_N[0] = js; num_cpu_n = 0; while (n > 0){ width = blas_quickdivide(n + nthreads - num_cpu_n - 1, nthreads - num_cpu_n); n -= width; if (n < 0) width = width + n; range_N[num_cpu_n + 1] = range_N[num_cpu_n] + width; num_cpu_n ++; } for (j = 0; j < num_cpu_m; j++) { for (i = 0; i < num_cpu_m; i++) { for (k = 0; k < DIVIDE_RATE; k++) { job[j].working[i][CACHE_LINE_SIZE * k] = 0; } } } queue[num_cpu_m - 1].next = NULL; exec_blas(num_cpu_m, queue); } #ifdef USE_ALLOC_HEAP free(job); #endif return 0; } int CNAME(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG mypos){ BLASLONG m = args -> m; BLASLONG n = args -> n; BLASLONG nthreads = args -> nthreads; BLASLONG divN, divT; int mode; if (nthreads == 1) { GEMM_LOCAL(args, range_m, range_n, sa, sb, 0); return 0; } if (range_m) { BLASLONG m_from = *(((BLASLONG *)range_m) + 0); BLASLONG m_to = *(((BLASLONG *)range_m) + 1); m = m_to - m_from; } if (range_n) { BLASLONG n_from = *(((BLASLONG *)range_n) + 0); BLASLONG n_to = *(((BLASLONG *)range_n) + 1); n = n_to - n_from; } if ((m < nthreads * SWITCH_RATIO) || (n < nthreads * SWITCH_RATIO)) { GEMM_LOCAL(args, range_m, range_n, sa, sb, 0); return 0; } divT = nthreads; divN = 1; #if 0 while ((GEMM_P * divT > m * SWITCH_RATIO) && (divT > 1)) { do { divT --; divN = 1; while (divT * divN < nthreads) divN ++; } while ((divT * divN != nthreads) && (divT > 1)); } #endif // fprintf(stderr, "divN = %4ld divT = %4ld\n", divN, divT); args -> nthreads = divT; if (divN == 1){ gemm_driver(args, range_m, range_n, sa, sb, 0); } else { #ifndef COMPLEX #ifdef XDOUBLE mode = BLAS_XDOUBLE | BLAS_REAL; #elif defined(DOUBLE) mode = BLAS_DOUBLE | BLAS_REAL; #else mode = BLAS_SINGLE | BLAS_REAL; #endif #else #ifdef XDOUBLE mode = BLAS_XDOUBLE | BLAS_COMPLEX; #elif defined(DOUBLE) mode = BLAS_DOUBLE | BLAS_COMPLEX; #else mode = BLAS_SINGLE | BLAS_COMPLEX; #endif #endif #if defined(TN) || defined(TT) || defined(TR) || defined(TC) || \ defined(CN) || defined(CT) || defined(CR) || defined(CC) mode |= (BLAS_TRANSA_T); #endif #if defined(NT) || defined(TT) || defined(RT) || defined(CT) || \ defined(NC) || defined(TC) || defined(RC) || defined(CC) mode |= (BLAS_TRANSB_T); #endif #ifdef OS_WINDOWS gemm_thread_n(mode, args, range_m, range_n, GEMM_LOCAL, sa, sb, divN); #else gemm_thread_n(mode, args, range_m, range_n, gemm_driver, sa, sb, divN); #endif } return 0; }