/***************************************************************************** Copyright (c) 2011-2014, The OpenBLAS Project All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the OpenBLAS project nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. **********************************************************************************/ /*********************************************************************/ /* Copyright 2009, 2010 The University of Texas at Austin. */ /* All rights reserved. */ /* */ /* Redistribution and use in source and binary forms, with or */ /* without modification, are permitted provided that the following */ /* conditions are met: */ /* */ /* 1. Redistributions of source code must retain the above */ /* copyright notice, this list of conditions and the following */ /* disclaimer. */ /* */ /* 2. Redistributions in binary form must reproduce the above */ /* copyright notice, this list of conditions and the following */ /* disclaimer in the documentation and/or other materials */ /* provided with the distribution. */ /* */ /* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */ /* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */ /* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */ /* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */ /* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */ /* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */ /* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */ /* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */ /* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */ /* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */ /* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */ /* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */ /* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */ /* POSSIBILITY OF SUCH DAMAGE. */ /* */ /* The views and conclusions contained in the software and */ /* documentation are those of the authors and should not be */ /* interpreted as representing official policies, either expressed */ /* or implied, of The University of Texas at Austin. */ /*********************************************************************/ #include "common.h" #if defined(OS_LINUX) || defined(OS_NETBSD) || defined(OS_DARWIN) || defined(OS_ANDROID) || defined(OS_SUNOS) #include #include #include #include #endif #ifndef likely #ifdef __GNUC__ #define likely(x) __builtin_expect(!!(x), 1) #else #define likely(x) (x) #endif #endif #ifndef unlikely #ifdef __GNUC__ #define unlikely(x) __builtin_expect(!!(x), 0) #else #define unlikely(x) (x) #endif #endif extern unsigned int openblas_thread_timeout(); #ifdef SMP_SERVER #undef MONITOR #undef TIMING #undef TIMING_DEBUG #undef NEED_STACKATTR #define ATTRIBUTE_SIZE 128 /* This is a thread server model implementation. The threads are */ /* spawned at first access to blas library, and still remains until */ /* destruction routine is called. The number of threads are */ /* equal to "OMP_NUM_THREADS - 1" and thread only wakes up when */ /* jobs is queued. */ /* We need this grobal for cheking if initialization is finished. */ int blas_server_avail __attribute__((aligned(ATTRIBUTE_SIZE))) = 0; /* Local Variables */ #if defined(USE_PTHREAD_LOCK) static pthread_mutex_t server_lock = PTHREAD_MUTEX_INITIALIZER; #elif defined(USE_PTHREAD_SPINLOCK) static pthread_spinlock_t server_lock = 0; #else static unsigned long server_lock = 0; #endif #define THREAD_STATUS_SLEEP 2 #define THREAD_STATUS_WAKEUP 4 static pthread_t blas_threads [MAX_CPU_NUMBER]; typedef struct { blas_queue_t * volatile queue __attribute__((aligned(ATTRIBUTE_SIZE))); #if defined(OS_LINUX) && !defined(NO_AFFINITY) int node; #endif volatile long status; pthread_mutex_t lock; pthread_cond_t wakeup; } thread_status_t; static thread_status_t thread_status[MAX_CPU_NUMBER] __attribute__((aligned(ATTRIBUTE_SIZE))); #ifndef THREAD_TIMEOUT #define THREAD_TIMEOUT 28 #endif static unsigned int thread_timeout = (1U << (THREAD_TIMEOUT)); #ifdef MONITOR /* Monitor is a function to see thread's status for every seconds. */ /* Usually it turns off and it's for debugging. */ static pthread_t monitor_thread; static int main_status[MAX_CPU_NUMBER]; #define MAIN_ENTER 0x01 #define MAIN_EXIT 0x02 #define MAIN_TRYLOCK 0x03 #define MAIN_LOCKSUCCESS 0x04 #define MAIN_QUEUING 0x05 #define MAIN_RECEIVING 0x06 #define MAIN_RUNNING1 0x07 #define MAIN_RUNNING2 0x08 #define MAIN_RUNNING3 0x09 #define MAIN_WAITING 0x0a #define MAIN_SLEEPING 0x0b #define MAIN_FINISH 0x0c #define MAIN_DONE 0x0d #endif #define BLAS_QUEUE_FINISHED 3 #define BLAS_QUEUE_RUNNING 4 #ifdef TIMING BLASLONG exit_time[MAX_CPU_NUMBER]; #endif static void legacy_exec(void *func, int mode, blas_arg_t *args, void *sb){ if (!(mode & BLAS_COMPLEX)){ #ifdef EXPRECISION if (mode & BLAS_XDOUBLE){ /* REAL / Extended Double */ void (*afunc)(BLASLONG, BLASLONG, BLASLONG, xdouble, xdouble *, BLASLONG, xdouble *, BLASLONG, xdouble *, BLASLONG, void *) = func; afunc(args -> m, args -> n, args -> k, ((xdouble *)args -> alpha)[0], args -> a, args -> lda, args -> b, args -> ldb, args -> c, args -> ldc, sb); } else #endif if (mode & BLAS_DOUBLE){ /* REAL / Double */ void (*afunc)(BLASLONG, BLASLONG, BLASLONG, double, double *, BLASLONG, double *, BLASLONG, double *, BLASLONG, void *) = func; afunc(args -> m, args -> n, args -> k, ((double *)args -> alpha)[0], args -> a, args -> lda, args -> b, args -> ldb, args -> c, args -> ldc, sb); } else { /* REAL / Single */ void (*afunc)(BLASLONG, BLASLONG, BLASLONG, float, float *, BLASLONG, float *, BLASLONG, float *, BLASLONG, void *) = func; afunc(args -> m, args -> n, args -> k, ((float *)args -> alpha)[0], args -> a, args -> lda, args -> b, args -> ldb, args -> c, args -> ldc, sb); } } else { #ifdef EXPRECISION if (mode & BLAS_XDOUBLE){ /* COMPLEX / Extended Double */ void (*afunc)(BLASLONG, BLASLONG, BLASLONG, xdouble, xdouble, xdouble *, BLASLONG, xdouble *, BLASLONG, xdouble *, BLASLONG, void *) = func; afunc(args -> m, args -> n, args -> k, ((xdouble *)args -> alpha)[0], ((xdouble *)args -> alpha)[1], args -> a, args -> lda, args -> b, args -> ldb, args -> c, args -> ldc, sb); } else #endif if (mode & BLAS_DOUBLE){ /* COMPLEX / Double */ void (*afunc)(BLASLONG, BLASLONG, BLASLONG, double, double, double *, BLASLONG, double *, BLASLONG, double *, BLASLONG, void *) = func; afunc(args -> m, args -> n, args -> k, ((double *)args -> alpha)[0], ((double *)args -> alpha)[1], args -> a, args -> lda, args -> b, args -> ldb, args -> c, args -> ldc, sb); } else { /* COMPLEX / Single */ void (*afunc)(BLASLONG, BLASLONG, BLASLONG, float, float, float *, BLASLONG, float *, BLASLONG, float *, BLASLONG, void *) = func; afunc(args -> m, args -> n, args -> k, ((float *)args -> alpha)[0], ((float *)args -> alpha)[1], args -> a, args -> lda, args -> b, args -> ldb, args -> c, args -> ldc, sb); } } } #if defined(OS_LINUX) && !defined(NO_AFFINITY) int gotoblas_set_affinity(int); int gotoblas_set_affinity2(int); int get_node(void); #endif static int increased_threads = 0; static void* blas_thread_server(void *arg){ /* Thread identifier */ BLASLONG cpu = (BLASLONG)arg; unsigned int last_tick; void *buffer, *sa, *sb; blas_queue_t *queue; #ifdef TIMING_DEBUG unsigned long start, stop; #endif #if defined(OS_LINUX) && !defined(NO_AFFINITY) if (!increased_threads) thread_status[cpu].node = gotoblas_set_affinity(cpu + 1); else thread_status[cpu].node = gotoblas_set_affinity(-1); #endif #ifdef MONITOR main_status[cpu] = MAIN_ENTER; #endif buffer = blas_memory_alloc(2); #ifdef SMP_DEBUG fprintf(STDERR, "Server[%2ld] Thread has just been spawned!\n", cpu); #endif while (1){ #ifdef MONITOR main_status[cpu] = MAIN_QUEUING; #endif #ifdef TIMING exit_time[cpu] = rpcc(); #endif last_tick = (unsigned int)rpcc(); while (!thread_status[cpu].queue) { YIELDING; if ((unsigned int)rpcc() - last_tick > thread_timeout) { pthread_mutex_lock (&thread_status[cpu].lock); if (!thread_status[cpu].queue) { thread_status[cpu].status = THREAD_STATUS_SLEEP; while (thread_status[cpu].status == THREAD_STATUS_SLEEP) { #ifdef MONITOR main_status[cpu] = MAIN_SLEEPING; #endif pthread_cond_wait(&thread_status[cpu].wakeup, &thread_status[cpu].lock); } } pthread_mutex_unlock(&thread_status[cpu].lock); last_tick = (unsigned int)rpcc(); } } queue = thread_status[cpu].queue; if ((long)queue == -1) break; #ifdef MONITOR main_status[cpu] = MAIN_RECEIVING; #endif #ifdef TIMING_DEBUG start = rpcc(); #endif if (queue) { int (*routine)(blas_arg_t *, void *, void *, void *, void *, BLASLONG) = queue -> routine; thread_status[cpu].queue = (blas_queue_t *)1; sa = queue -> sa; sb = queue -> sb; #ifdef SMP_DEBUG if (queue -> args) { fprintf(STDERR, "Server[%2ld] Calculation started. Mode = 0x%03x M = %3ld N=%3ld K=%3ld\n", cpu, queue->mode, queue-> args ->m, queue->args->n, queue->args->k); } #endif #ifdef CONSISTENT_FPCSR __asm__ __volatile__ ("ldmxcsr %0" : : "m" (queue -> sse_mode)); __asm__ __volatile__ ("fldcw %0" : : "m" (queue -> x87_mode)); #endif #ifdef MONITOR main_status[cpu] = MAIN_RUNNING1; #endif if (sa == NULL) sa = (void *)((BLASLONG)buffer + GEMM_OFFSET_A); if (sb == NULL) { if (!(queue -> mode & BLAS_COMPLEX)){ #ifdef EXPRECISION if (queue -> mode & BLAS_XDOUBLE){ sb = (void *)(((BLASLONG)sa + ((QGEMM_P * QGEMM_Q * sizeof(xdouble) + GEMM_ALIGN) & ~GEMM_ALIGN)) + GEMM_OFFSET_B); } else #endif if (queue -> mode & BLAS_DOUBLE){ sb = (void *)(((BLASLONG)sa + ((DGEMM_P * DGEMM_Q * sizeof(double) + GEMM_ALIGN) & ~GEMM_ALIGN)) + GEMM_OFFSET_B); } else { sb = (void *)(((BLASLONG)sa + ((SGEMM_P * SGEMM_Q * sizeof(float) + GEMM_ALIGN) & ~GEMM_ALIGN)) + GEMM_OFFSET_B); } } else { #ifdef EXPRECISION if (queue -> mode & BLAS_XDOUBLE){ sb = (void *)(((BLASLONG)sa + ((XGEMM_P * XGEMM_Q * 2 * sizeof(xdouble) + GEMM_ALIGN) & ~GEMM_ALIGN)) + GEMM_OFFSET_B); } else #endif if (queue -> mode & BLAS_DOUBLE){ sb = (void *)(((BLASLONG)sa + ((ZGEMM_P * ZGEMM_Q * 2 * sizeof(double) + GEMM_ALIGN) & ~GEMM_ALIGN)) + GEMM_OFFSET_B); } else { sb = (void *)(((BLASLONG)sa + ((CGEMM_P * CGEMM_Q * 2 * sizeof(float) + GEMM_ALIGN) & ~GEMM_ALIGN)) + GEMM_OFFSET_B); } } queue->sb=sb; } #ifdef MONITOR main_status[cpu] = MAIN_RUNNING2; #endif if (queue -> mode & BLAS_LEGACY) { legacy_exec(routine, queue -> mode, queue -> args, sb); } else if (queue -> mode & BLAS_PTHREAD) { void (*pthreadcompat)(void *) = queue -> routine; (pthreadcompat)(queue -> args); } else (routine)(queue -> args, queue -> range_m, queue -> range_n, sa, sb, queue -> position); #ifdef SMP_DEBUG fprintf(STDERR, "Server[%2ld] Calculation finished!\n", cpu); #endif #ifdef MONITOR main_status[cpu] = MAIN_FINISH; #endif // arm: make sure all results are written out _before_ // thread is marked as done and other threads use them WMB; thread_status[cpu].queue = (blas_queue_t * volatile) ((long)thread_status[cpu].queue & 0); /* Need a trick */ WMB; } #ifdef MONITOR main_status[cpu] = MAIN_DONE; #endif #ifdef TIMING_DEBUG stop = rpcc(); fprintf(STDERR, "Thread[%ld] : %16lu %16lu (%8lu cycles)\n", cpu + 1, start, stop, stop - start); #endif } /* Shutdown procedure */ #ifdef SMP_DEBUG fprintf(STDERR, "Server[%2ld] Shutdown!\n", cpu); #endif blas_memory_free(buffer); //pthread_exit(NULL); return NULL; } #ifdef MONITOR static BLASLONG num_suspend = 0; static int blas_monitor(void *arg){ int i; while(1){ for (i = 0; i < blas_num_threads - 1; i++){ switch (main_status[i]) { case MAIN_ENTER : fprintf(STDERR, "THREAD[%2d] : Entering.\n", i); break; case MAIN_EXIT : fprintf(STDERR, "THREAD[%2d] : Exiting.\n", i); break; case MAIN_TRYLOCK : fprintf(STDERR, "THREAD[%2d] : Trying lock operation.\n", i); break; case MAIN_QUEUING : fprintf(STDERR, "THREAD[%2d] : Queuing.\n", i); break; case MAIN_RECEIVING : fprintf(STDERR, "THREAD[%2d] : Receiving.\n", i); break; case MAIN_RUNNING1 : fprintf(STDERR, "THREAD[%2d] : Running1.\n", i); break; case MAIN_RUNNING2 : fprintf(STDERR, "THREAD[%2d] : Running2.\n", i); break; case MAIN_RUNNING3 : fprintf(STDERR, "THREAD[%2d] : Running3.\n", i); break; case MAIN_WAITING : fprintf(STDERR, "THREAD[%2d] : Waiting.\n", i); break; case MAIN_SLEEPING : fprintf(STDERR, "THREAD[%2d] : Sleeping.\n", i); break; case MAIN_FINISH : fprintf(STDERR, "THREAD[%2d] : Finishing.\n", i); break; case MAIN_DONE : fprintf(STDERR, "THREAD[%2d] : Job is done.\n", i); break; } fprintf(stderr, "Total number of suspended ... %ld\n", num_suspend); } sleep(1); } return 0; } #endif /* Initializing routine */ int blas_thread_init(void){ BLASLONG i; int ret; int thread_timeout_env; #ifdef NEED_STACKATTR pthread_attr_t attr; #endif if (blas_server_avail) return 0; #ifdef NEED_STACKATTR pthread_attr_init(&attr); pthread_attr_setguardsize(&attr, 0x1000U); pthread_attr_setstacksize( &attr, 0x1000U); #endif LOCK_COMMAND(&server_lock); if (!blas_server_avail){ thread_timeout_env=openblas_thread_timeout(); if (thread_timeout_env>0) { if (thread_timeout_env < 4) thread_timeout_env = 4; if (thread_timeout_env > 30) thread_timeout_env = 30; thread_timeout = (1 << thread_timeout_env); } for(i = 0; i < blas_num_threads - 1; i++){ thread_status[i].queue = (blas_queue_t *)NULL; thread_status[i].status = THREAD_STATUS_WAKEUP; pthread_mutex_init(&thread_status[i].lock, NULL); pthread_cond_init (&thread_status[i].wakeup, NULL); #ifdef NEED_STACKATTR ret=pthread_create(&blas_threads[i], &attr, &blas_thread_server, (void *)i); #else ret=pthread_create(&blas_threads[i], NULL, &blas_thread_server, (void *)i); #endif if(ret!=0){ struct rlimit rlim; const char *msg = strerror(ret); fprintf(STDERR, "OpenBLAS blas_thread_init: pthread_create: %s\n", msg); #ifdef RLIMIT_NPROC if(0 == getrlimit(RLIMIT_NPROC, &rlim)) { fprintf(STDERR, "OpenBLAS blas_thread_init: RLIMIT_NPROC " "%ld current, %ld max\n", (long)(rlim.rlim_cur), (long)(rlim.rlim_max)); } #endif if(0 != raise(SIGINT)) { fprintf(STDERR, "OpenBLAS blas_thread_init: calling exit(3)\n"); exit(EXIT_FAILURE); } } } #ifdef MONITOR pthread_create(&monitor_thread, NULL, (void *)&blas_monitor, (void *)NULL); #endif blas_server_avail = 1; } UNLOCK_COMMAND(&server_lock); return 0; } /* User can call one of two routines. exec_blas_async ... immediately returns after jobs are queued. exec_blas ... returns after jobs are finished. */ static BLASULONG exec_queue_lock = 0; int exec_blas_async(BLASLONG pos, blas_queue_t *queue){ #ifdef SMP_SERVER // Handle lazy re-init of the thread-pool after a POSIX fork if (unlikely(blas_server_avail == 0)) blas_thread_init(); #endif BLASLONG i = 0; blas_queue_t *current = queue; #if defined(OS_LINUX) && !defined(NO_AFFINITY) && !defined(PARAMTEST) int node = get_node(); int nodes = get_num_nodes(); #endif #ifdef SMP_DEBUG int exec_count = 0; fprintf(STDERR, "Exec_blas_async is called. Position = %d\n", pos); #endif blas_lock(&exec_queue_lock); while (queue) { queue -> position = pos; #ifdef CONSISTENT_FPCSR __asm__ __volatile__ ("fnstcw %0" : "=m" (queue -> x87_mode)); __asm__ __volatile__ ("stmxcsr %0" : "=m" (queue -> sse_mode)); #endif #if defined(OS_LINUX) && !defined(NO_AFFINITY) && !defined(PARAMTEST) /* Node Mapping Mode */ if (queue -> mode & BLAS_NODE) { do { while((thread_status[i].node != node || thread_status[i].queue) && (i < blas_num_threads - 1)) i ++; if (i < blas_num_threads - 1) break; i ++; if (i >= blas_num_threads - 1) { i = 0; node ++; if (node >= nodes) node = 0; } } while (1); } else { while(thread_status[i].queue) { i ++; if (i >= blas_num_threads - 1) i = 0; } } #else while(thread_status[i].queue) { i ++; if (i >= blas_num_threads - 1) i = 0; } #endif queue -> assigned = i; WMB; thread_status[i].queue = queue; WMB; queue = queue -> next; pos ++; #ifdef SMP_DEBUG exec_count ++; #endif } blas_unlock(&exec_queue_lock); #ifdef SMP_DEBUG fprintf(STDERR, "Done(Number of threads = %2ld).\n", exec_count); #endif while (current) { pos = current -> assigned; if ((BLASULONG)thread_status[pos].queue > 1) { if (thread_status[pos].status == THREAD_STATUS_SLEEP) { pthread_mutex_lock (&thread_status[pos].lock); #ifdef MONITOR num_suspend ++; #endif if (thread_status[pos].status == THREAD_STATUS_SLEEP) { thread_status[pos].status = THREAD_STATUS_WAKEUP; pthread_cond_signal(&thread_status[pos].wakeup); } pthread_mutex_unlock(&thread_status[pos].lock); } } current = current -> next; } return 0; } int exec_blas_async_wait(BLASLONG num, blas_queue_t *queue){ while ((num > 0) && queue) { while(thread_status[queue -> assigned].queue) { YIELDING; }; queue = queue -> next; num --; } #ifdef SMP_DEBUG fprintf(STDERR, "Done.\n\n"); #endif return 0; } /* Execute Threads */ int exec_blas(BLASLONG num, blas_queue_t *queue){ #ifdef SMP_SERVER // Handle lazy re-init of the thread-pool after a POSIX fork if (unlikely(blas_server_avail == 0)) blas_thread_init(); #endif int (*routine)(blas_arg_t *, void *, void *, double *, double *, BLASLONG); #ifdef TIMING_DEBUG BLASULONG start, stop; #endif if ((num <= 0) || (queue == NULL)) return 0; #ifdef SMP_DEBUG fprintf(STDERR, "Exec_blas is called. Number of executing threads : %ld\n", num); #endif #ifdef __ELF__ if (omp_in_parallel && (num > 1)) { if (omp_in_parallel() > 0) { fprintf(stderr, "OpenBLAS Warning : Detect OpenMP Loop and this application may hang. " "Please rebuild the library with USE_OPENMP=1 option.\n"); } } #endif if ((num > 1) && queue -> next) exec_blas_async(1, queue -> next); #ifdef TIMING_DEBUG start = rpcc(); fprintf(STDERR, "\n"); #endif routine = queue -> routine; if (queue -> mode & BLAS_LEGACY) { legacy_exec(routine, queue -> mode, queue -> args, queue -> sb); } else if (queue -> mode & BLAS_PTHREAD) { void (*pthreadcompat)(void *) = queue -> routine; (pthreadcompat)(queue -> args); } else (routine)(queue -> args, queue -> range_m, queue -> range_n, queue -> sa, queue -> sb, 0); #ifdef TIMING_DEBUG stop = rpcc(); #endif if ((num > 1) && queue -> next) { exec_blas_async_wait(num - 1, queue -> next); // arm: make sure results from other threads are visible MB; } #ifdef TIMING_DEBUG fprintf(STDERR, "Thread[0] : %16lu %16lu (%8lu cycles)\n", start, stop, stop - start); #endif return 0; } void goto_set_num_threads(int num_threads) { long i; if (num_threads < 1) num_threads = blas_num_threads; #ifndef NO_AFFINITY if (num_threads == 1) { if (blas_cpu_number == 1){ //OpenBLAS is already single thread. return; }else{ //From multi-threads to single thread //Restore the original affinity mask gotoblas_set_affinity(-1); } } #endif if (num_threads > MAX_CPU_NUMBER) num_threads = MAX_CPU_NUMBER; if (num_threads > blas_num_threads) { LOCK_COMMAND(&server_lock); increased_threads = 1; for(i = blas_num_threads - 1; i < num_threads - 1; i++){ thread_status[i].queue = (blas_queue_t *)NULL; thread_status[i].status = THREAD_STATUS_WAKEUP; pthread_mutex_init(&thread_status[i].lock, NULL); pthread_cond_init (&thread_status[i].wakeup, NULL); #ifdef NEED_STACKATTR pthread_create(&blas_threads[i], &attr, &blas_thread_server, (void *)i); #else pthread_create(&blas_threads[i], NULL, &blas_thread_server, (void *)i); #endif } blas_num_threads = num_threads; UNLOCK_COMMAND(&server_lock); } #ifndef NO_AFFINITY if(blas_cpu_number == 1 && num_threads > 1){ //Restore the thread 0 affinity. gotoblas_set_affinity(0); } #endif blas_cpu_number = num_threads; #if defined(ARCH_MIPS64) //set parameters for different number of threads. blas_set_parameter(); #endif } void openblas_set_num_threads(int num_threads) { goto_set_num_threads(num_threads); } /* Compatible function with pthread_create / join */ int gotoblas_pthread(int numthreads, void *function, void *args, int stride) { blas_queue_t queue[MAX_CPU_NUMBER]; int i; if (numthreads <= 0) return 0; #ifdef SMP if (blas_cpu_number == 0) blas_get_cpu_number(); #ifdef SMP_SERVER if (blas_server_avail == 0) blas_thread_init(); #endif #endif for (i = 0; i < numthreads; i ++) { queue[i].mode = BLAS_PTHREAD; queue[i].routine = function; queue[i].args = args; queue[i].range_m = NULL; queue[i].range_n = NULL; queue[i].sa = args; queue[i].sb = args; queue[i].next = &queue[i + 1]; args += stride; } queue[numthreads - 1].next = NULL; exec_blas(numthreads, queue); return 0; } /* Shutdown procedure, but user don't have to call this routine. The */ /* kernel automatically kill threads. */ int BLASFUNC(blas_thread_shutdown)(void){ int i; if (!blas_server_avail) return 0; LOCK_COMMAND(&server_lock); for (i = 0; i < blas_num_threads - 1; i++) { blas_lock(&exec_queue_lock); thread_status[i].queue = (blas_queue_t *)-1; blas_unlock(&exec_queue_lock); pthread_mutex_lock (&thread_status[i].lock); thread_status[i].status = THREAD_STATUS_WAKEUP; pthread_cond_signal (&thread_status[i].wakeup); pthread_mutex_unlock(&thread_status[i].lock); } for(i = 0; i < blas_num_threads - 1; i++){ pthread_join(blas_threads[i], NULL); } for(i = 0; i < blas_num_threads - 1; i++){ pthread_mutex_destroy(&thread_status[i].lock); pthread_cond_destroy (&thread_status[i].wakeup); } #ifdef NEED_STACKATTR pthread_attr_destory(&attr); #endif blas_server_avail = 0; UNLOCK_COMMAND(&server_lock); return 0; } #endif