/*************************************************************************** Copyright (c) 2013, The OpenBLAS Project All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the OpenBLAS project nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OPENBLAS PROJECT OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *****************************************************************************/ /************************************************************************************** * 2013/11/22 Saar * BLASTEST : OK * CTEST : OK * TEST : OK * **************************************************************************************/ #define ASSEMBLER #include "common.h" #define STACKSIZE 256 #define N r0 #define X r1 #define INC_X r2 #define I r12 #define X_PRE 512 /************************************************************************************** * Macro definitions **************************************************************************************/ #if !defined(COMPLEX) #if defined(DOUBLE) .macro KERNEL_F1 fldmiad X!, { d4 } vcmpe.f64 d4, d6 // compare with 0.0 vmrs APSR_nzcv, fpscr beq KERNEL_F1_NEXT_\@ vabs.f64 d4, d4 vcmpe.f64 d0, d4 // compare with scale vmrs APSR_nzcv, fpscr vdivge.f64 d2 , d4, d0 // scale >= x ? x / scale vmlage.f64 d1 , d2 , d2 // ssq += ( x/scale ) * ( x/scale ) bge KERNEL_F1_NEXT_\@ vdiv.f64 d2 , d0, d4 // scale / x vmul.f64 d2 , d2, d2 // ( scale / x ) * ( scale / x ) vmul.f64 d3 , d1, d2 // ssq * ( scale / x ) * ( scale / x ) vadd.f64 d1 , d3, d7 // ssq = 1 + ssq * ( scale / x ) * ( scale / x ) vmov.f64 d0 , d4 // scale = x KERNEL_F1_NEXT_\@: .endm .macro KERNEL_F8 pld [ X, #X_PRE ] KERNEL_F1 KERNEL_F1 KERNEL_F1 KERNEL_F1 pld [ X, #X_PRE ] KERNEL_F1 KERNEL_F1 KERNEL_F1 KERNEL_F1 .endm .macro KERNEL_S1 fldmiad X, { d4 } vcmpe.f64 d4, d6 // compare with 0.0 vmrs APSR_nzcv, fpscr beq KERNEL_S1_NEXT vabs.f64 d4, d4 vcmpe.f64 d0, d4 // compare with scale vmrs APSR_nzcv, fpscr vdivge.f64 d2 , d4, d0 // scale >= x ? x / scale vmlage.f64 d1 , d2 , d2 // ssq += ( x/scale ) * ( x/scale ) bge KERNEL_S1_NEXT vdiv.f64 d2 , d0, d4 // scale / x vmul.f64 d2 , d2, d2 // ( scale / x ) * ( scale / x ) vmul.f64 d3 , d1, d2 // ssq * ( scale / x ) * ( scale / x ) vadd.f64 d1 , d3, d7 // ssq = 1 + ssq * ( scale / x ) * ( scale / x ) vmov.f64 d0 , d4 // scale = x KERNEL_S1_NEXT: add X, X, INC_X .endm #else .macro KERNEL_F1 fldmias X!, { s4 } vcmpe.f32 s4, s6 // compare with 0.0 vmrs APSR_nzcv, fpscr beq KERNEL_F1_NEXT_\@ vabs.f32 s4, s4 vcmpe.f32 s0, s4 // compare with scale vmrs APSR_nzcv, fpscr vdivge.f32 s2 , s4, s0 // scale >= x ? x / scale vmlage.f32 s1 , s2 , s2 // ssq += ( x/scale ) * ( x/scale ) bge KERNEL_F1_NEXT_\@ vdiv.f32 s2 , s0, s4 // scale / x vmul.f32 s2 , s2, s2 // ( scale / x ) * ( scale / x ) vmul.f32 s3 , s1, s2 // ssq * ( scale / x ) * ( scale / x ) vadd.f32 s1 , s3, s7 // ssq = 1 + ssq * ( scale / x ) * ( scale / x ) vmov.f32 s0 , s4 // scale = x KERNEL_F1_NEXT_\@: .endm .macro KERNEL_F8 pld [ X, #X_PRE ] KERNEL_F1 KERNEL_F1 KERNEL_F1 KERNEL_F1 KERNEL_F1 KERNEL_F1 KERNEL_F1 KERNEL_F1 .endm .macro KERNEL_S1 fldmias X, { s4 } vcmpe.f32 s4, s6 // compare with 0.0 vmrs APSR_nzcv, fpscr beq KERNEL_S1_NEXT vabs.f32 s4, s4 vcmpe.f32 s0, s4 // compare with scale vmrs APSR_nzcv, fpscr vdivge.f32 s2 , s4, s0 // scale >= x ? x / scale vmlage.f32 s1 , s2 , s2 // ssq += ( x/scale ) * ( x/scale ) bge KERNEL_S1_NEXT vdiv.f32 s2 , s0, s4 // scale / x vmul.f32 s2 , s2, s2 // ( scale / x ) * ( scale / x ) vmul.f32 s3 , s1, s2 // ssq * ( scale / x ) * ( scale / x ) vadd.f32 s1 , s3, s7 // ssq = 1 + ssq * ( scale / x ) * ( scale / x ) vmov.f32 s0 , s4 // scale = x KERNEL_S1_NEXT: add X, X, INC_X .endm #endif #else #if defined(DOUBLE) .macro KERNEL_F1 fldmiad X!, { d4 - d5 } vcmpe.f64 d4, d6 // compare with 0.0 vmrs APSR_nzcv, fpscr beq KERNEL_F1_NEXT_\@ vabs.f64 d4, d4 vcmpe.f64 d0, d4 // compare with scale vmrs APSR_nzcv, fpscr vdivge.f64 d2 , d4, d0 // scale >= x ? x / scale vmlage.f64 d1 , d2 , d2 // ssq += ( x/scale ) * ( x/scale ) bge KERNEL_F1_NEXT_\@ vdiv.f64 d2 , d0, d4 // scale / x vmul.f64 d2 , d2, d2 // ( scale / x ) * ( scale / x ) vmul.f64 d3 , d1, d2 // ssq * ( scale / x ) * ( scale / x ) vadd.f64 d1 , d3, d7 // ssq = 1 + ssq * ( scale / x ) * ( scale / x ) vmov.f64 d0 , d4 // scale = x KERNEL_F1_NEXT_\@: vcmpe.f64 d5, d6 // compare with 0.0 vmrs APSR_nzcv, fpscr beq KERNEL_F1_END_\@ vabs.f64 d5, d5 vcmpe.f64 d0, d5 // compare with scale vmrs APSR_nzcv, fpscr vdivge.f64 d2 , d5, d0 // scale >= x ? x / scale vmlage.f64 d1 , d2 , d2 // ssq += ( x/scale ) * ( x/scale ) bge KERNEL_F1_END_\@ vdiv.f64 d2 , d0, d5 // scale / x vmul.f64 d2 , d2, d2 // ( scale / x ) * ( scale / x ) vmul.f64 d3 , d1, d2 // ssq * ( scale / x ) * ( scale / x ) vadd.f64 d1 , d3, d7 // ssq = 1 + ssq * ( scale / x ) * ( scale / x ) vmov.f64 d0 , d5 // scale = x KERNEL_F1_END_\@: .endm .macro KERNEL_F8 pld [ X, #X_PRE ] KERNEL_F1 KERNEL_F1 pld [ X, #X_PRE ] KERNEL_F1 KERNEL_F1 pld [ X, #X_PRE ] KERNEL_F1 KERNEL_F1 pld [ X, #X_PRE ] KERNEL_F1 KERNEL_F1 .endm .macro KERNEL_S1 fldmiad X, { d4 - d5 } vcmpe.f64 d4, d6 // compare with 0.0 vmrs APSR_nzcv, fpscr beq KERNEL_S1_NEXT_\@ vabs.f64 d4, d4 vcmpe.f64 d0, d4 // compare with scale vmrs APSR_nzcv, fpscr vdivge.f64 d2 , d4, d0 // scale >= x ? x / scale vmlage.f64 d1 , d2 , d2 // ssq += ( x/scale ) * ( x/scale ) bge KERNEL_S1_NEXT_\@ vdiv.f64 d2 , d0, d4 // scale / x vmul.f64 d2 , d2, d2 // ( scale / x ) * ( scale / x ) vmul.f64 d3 , d1, d2 // ssq * ( scale / x ) * ( scale / x ) vadd.f64 d1 , d3, d7 // ssq = 1 + ssq * ( scale / x ) * ( scale / x ) vmov.f64 d0 , d4 // scale = x KERNEL_S1_NEXT_\@: vcmpe.f64 d5, d6 // compare with 0.0 vmrs APSR_nzcv, fpscr beq KERNEL_S1_END_\@ vabs.f64 d5, d5 vcmpe.f64 d0, d5 // compare with scale vmrs APSR_nzcv, fpscr vdivge.f64 d2 , d5, d0 // scale >= x ? x / scale vmlage.f64 d1 , d2 , d2 // ssq += ( x/scale ) * ( x/scale ) bge KERNEL_S1_END_\@ vdiv.f64 d2 , d0, d5 // scale / x vmul.f64 d2 , d2, d2 // ( scale / x ) * ( scale / x ) vmul.f64 d3 , d1, d2 // ssq * ( scale / x ) * ( scale / x ) vadd.f64 d1 , d3, d7 // ssq = 1 + ssq * ( scale / x ) * ( scale / x ) vmov.f64 d0 , d5 // scale = x KERNEL_S1_END_\@: add X, X, INC_X .endm #else .macro KERNEL_F1 fldmias X!, { s4 - s5 } vcmpe.f32 s4, s6 // compare with 0.0 vmrs APSR_nzcv, fpscr beq KERNEL_F1_NEXT_\@ vabs.f32 s4, s4 vcmpe.f32 s0, s4 // compare with scale vmrs APSR_nzcv, fpscr vdivge.f32 s2 , s4, s0 // scale >= x ? x / scale vmlage.f32 s1 , s2 , s2 // ssq += ( x/scale ) * ( x/scale ) bge KERNEL_F1_NEXT_\@ vdiv.f32 s2 , s0, s4 // scale / x vmul.f32 s2 , s2, s2 // ( scale / x ) * ( scale / x ) vmul.f32 s3 , s1, s2 // ssq * ( scale / x ) * ( scale / x ) vadd.f32 s1 , s3, s7 // ssq = 1 + ssq * ( scale / x ) * ( scale / x ) vmov.f32 s0 , s4 // scale = x KERNEL_F1_NEXT_\@: vcmpe.f32 s5, s6 // compare with 0.0 vmrs APSR_nzcv, fpscr beq KERNEL_F1_END_\@ vabs.f32 s5, s5 vcmpe.f32 s0, s5 // compare with scale vmrs APSR_nzcv, fpscr vdivge.f32 s2 , s5, s0 // scale >= x ? x / scale vmlage.f32 s1 , s2 , s2 // ssq += ( x/scale ) * ( x/scale ) bge KERNEL_F1_END_\@ vdiv.f32 s2 , s0, s5 // scale / x vmul.f32 s2 , s2, s2 // ( scale / x ) * ( scale / x ) vmul.f32 s3 , s1, s2 // ssq * ( scale / x ) * ( scale / x ) vadd.f32 s1 , s3, s7 // ssq = 1 + ssq * ( scale / x ) * ( scale / x ) vmov.f32 s0 , s5 // scale = x KERNEL_F1_END_\@: .endm .macro KERNEL_F8 pld [ X, #X_PRE ] KERNEL_F1 KERNEL_F1 KERNEL_F1 KERNEL_F1 pld [ X, #X_PRE ] KERNEL_F1 KERNEL_F1 KERNEL_F1 KERNEL_F1 .endm .macro KERNEL_S1 fldmias X, { s4 - s5 } vcmpe.f32 s4, s6 // compare with 0.0 vmrs APSR_nzcv, fpscr beq KERNEL_S1_NEXT_\@ vabs.f32 s4, s4 vcmpe.f32 s0, s4 // compare with scale vmrs APSR_nzcv, fpscr vdivge.f32 s2 , s4, s0 // scale >= x ? x / scale vmlage.f32 s1 , s2 , s2 // ssq += ( x/scale ) * ( x/scale ) bge KERNEL_S1_NEXT_\@ vdiv.f32 s2 , s0, s4 // scale / x vmul.f32 s2 , s2, s2 // ( scale / x ) * ( scale / x ) vmul.f32 s3 , s1, s2 // ssq * ( scale / x ) * ( scale / x ) vadd.f32 s1 , s3, s7 // ssq = 1 + ssq * ( scale / x ) * ( scale / x ) vmov.f32 s0 , s4 // scale = x KERNEL_S1_NEXT_\@: vcmpe.f32 s5, s6 // compare with 0.0 vmrs APSR_nzcv, fpscr beq KERNEL_S1_END_\@ vabs.f32 s5, s5 vcmpe.f32 s0, s5 // compare with scale vmrs APSR_nzcv, fpscr vdivge.f32 s2 , s5, s0 // scale >= x ? x / scale vmlage.f32 s1 , s2 , s2 // ssq += ( x/scale ) * ( x/scale ) bge KERNEL_S1_END_\@ vdiv.f32 s2 , s0, s5 // scale / x vmul.f32 s2 , s2, s2 // ( scale / x ) * ( scale / x ) vmul.f32 s3 , s1, s2 // ssq * ( scale / x ) * ( scale / x ) vadd.f32 s1 , s3, s7 // ssq = 1 + ssq * ( scale / x ) * ( scale / x ) vmov.f32 s0 , s5 // scale = x KERNEL_S1_END_\@: add X, X, INC_X .endm #endif #endif /************************************************************************************** * End of macro definitions **************************************************************************************/ PROLOGUE b nrm2_begin #if defined(COMPLEX) #if defined(DOUBLE) znrm2_zero: .word 0x00000000 .word 0x00000000 znrm2_one: .word 0x00000000 .word 0x3ff00000 #else cnrm2_zero: .word 0x00000000 cnrm2_one: .word 0x3f800000 #endif #else #if defined(DOUBLE) dnrm2_zero: .word 0x00000000 .word 0x00000000 dnrm2_one: .word 0x00000000 .word 0x3ff00000 #else snrm2_zero: .word 0x00000000 snrm2_one: .word 0x3f800000 #endif #endif .align 5 nrm2_begin: #if defined(COMPLEX) #if defined(DOUBLE) vldr.64 d0 , znrm2_zero vldr.64 d1 , znrm2_one // ssq=1.0 vmov.f64 d7 , d1 // value 1.0 vmov.f64 d6 , d0 // value 0.0 #else vldr.32 s0 , cnrm2_zero vldr.32 s1 , cnrm2_one // ssq=1.0 vmov.f32 s7 , s1 // value 1.0 vmov.f32 s6 , s0 // value 0.0 #endif #else #if defined(DOUBLE) vldr.64 d0 , dnrm2_zero vldr.64 d1 , dnrm2_one // ssq=1.0 vmov.f64 d7 , d1 // value 1.0 vmov.f64 d6 , d0 // value 0.0 #else vldr.32 s0 , snrm2_zero vldr.32 s1 , snrm2_one // ssq=1.0 vmov.f32 s7 , s1 // value 1.0 vmov.f32 s6 , s0 // value 0.0 #endif #endif cmp N, #0 ble nrm2_kernel_L999 cmp INC_X, #0 beq nrm2_kernel_L999 cmp INC_X, #1 bne nrm2_kernel_S_BEGIN nrm2_kernel_F_BEGIN: asrs I, N, #3 // I = N / 8 ble nrm2_kernel_F1 nrm2_kernel_F8: KERNEL_F8 subs I, I, #1 bne nrm2_kernel_F8 nrm2_kernel_F1: ands I, N, #7 ble nrm2_kernel_L999 nrm2_kernel_F10: KERNEL_F1 subs I, I, #1 bne nrm2_kernel_F10 b nrm2_kernel_L999 nrm2_kernel_S_BEGIN: #if defined(COMPLEX) #if defined(DOUBLE) lsl INC_X, INC_X, #4 // INC_X * SIZE * 2 #else lsl INC_X, INC_X, #3 // INC_X * SIZE * 2 #endif #else #if defined(DOUBLE) lsl INC_X, INC_X, #3 // INC_X * SIZE #else lsl INC_X, INC_X, #2 // INC_X * SIZE #endif #endif nrm2_kernel_S1: mov I, N .align 5 nrm2_kernel_S10: KERNEL_S1 subs I, I, #1 bne nrm2_kernel_S10 nrm2_kernel_L999: #if defined(DOUBLE) vsqrt.f64 d1, d1 vmul.f64 d0, d0, d1 #else vsqrt.f32 s1, s1 vmul.f32 s0, s0, s1 #endif bx lr EPILOGUE