/*********************************************************************/ /* Copyright 2009, 2010 The University of Texas at Austin. */ /* All rights reserved. */ /* */ /* Redistribution and use in source and binary forms, with or */ /* without modification, are permitted provided that the following */ /* conditions are met: */ /* */ /* 1. Redistributions of source code must retain the above */ /* copyright notice, this list of conditions and the following */ /* disclaimer. */ /* */ /* 2. Redistributions in binary form must reproduce the above */ /* copyright notice, this list of conditions and the following */ /* disclaimer in the documentation and/or other materials */ /* provided with the distribution. */ /* */ /* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */ /* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */ /* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */ /* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */ /* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */ /* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */ /* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */ /* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */ /* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */ /* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */ /* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */ /* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */ /* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */ /* POSSIBILITY OF SUCH DAMAGE. */ /* */ /* The views and conclusions contained in the software and */ /* documentation are those of the authors and should not be */ /* interpreted as representing official policies, either expressed */ /* or implied, of The University of Texas at Austin. */ /*********************************************************************/ #define ASSEMBLER #include "common.h" #define OLD_M %rdi #define OLD_N %rsi #define M %r13 #define J %r14 #define OLD_K %rdx #define A %rcx #define B %r8 #define C %r9 #define LDC %r10 #define I %r11 #define AO %rdi #define BO %rsi #define CO1 %r15 #define K %r12 #define BI %rbp #define SP %rbx #define BO1 %rdi #define BO2 %r15 #ifndef WINDOWS_ABI #define STACKSIZE 96 #else #define STACKSIZE 320 #define OLD_ALPHA_I 40 + STACKSIZE(%rsp) #define OLD_A 48 + STACKSIZE(%rsp) #define OLD_B 56 + STACKSIZE(%rsp) #define OLD_C 64 + STACKSIZE(%rsp) #define OLD_LDC 72 + STACKSIZE(%rsp) #define OLD_OFFSET 80 + STACKSIZE(%rsp) #endif #define L_BUFFER_SIZE 8192 #define Ndiv6 24(%rsp) #define Nmod6 32(%rsp) #define N 40(%rsp) #define ALPHA_R 48(%rsp) #define ALPHA_I 56(%rsp) #define OFFSET 64(%rsp) #define KK 72(%rsp) #define KKK 80(%rsp) #define BUFFER1 128(%rsp) #define BUFFER2 LB2_OFFSET+128(%rsp) #if defined(OS_WINDOWS) #if L_BUFFER_SIZE > 16384 #define STACK_TOUCH \ movl $0, 4096 * 4(%rsp);\ movl $0, 4096 * 3(%rsp);\ movl $0, 4096 * 2(%rsp);\ movl $0, 4096 * 1(%rsp); #elif L_BUFFER_SIZE > 12288 #define STACK_TOUCH \ movl $0, 4096 * 3(%rsp);\ movl $0, 4096 * 2(%rsp);\ movl $0, 4096 * 1(%rsp); #elif L_BUFFER_SIZE > 8192 #define STACK_TOUCH \ movl $0, 4096 * 2(%rsp);\ movl $0, 4096 * 1(%rsp); #elif L_BUFFER_SIZE > 4096 #define STACK_TOUCH \ movl $0, 4096 * 1(%rsp); #else #define STACK_TOUCH #endif #else #define STACK_TOUCH #endif #if defined(NN) || defined(NT) || defined(TN) || defined(TT) #define VFMADD_R vfmaddps #define VFMADD_I vfmaddps #elif defined(RN) || defined(RT) || defined(CN) || defined(CT) #define VFMADD_R vfnmaddps #define VFMADD_I vfmaddps #elif defined(NR) || defined(NC) || defined(TR) || defined(TC) #define VFMADD_R vfmaddps #define VFMADD_I vfnmaddps #else #define VFMADD_R vfnmaddps #define VFMADD_I vfnmaddps #endif #define A_PR1 384 #define B_PR1 192 #define KERNEL4x2_1(xx) \ prefetcht0 A_PR1(AO,%rax,SIZE) ;\ vmovups -16 * SIZE(AO, %rax, SIZE), %xmm0 ;\ vbroadcastss -8 * SIZE(BO, BI, SIZE), %xmm4 ;\ VFMADD_R %xmm8,%xmm4,%xmm0,%xmm8 ;\ vmovups -12 * SIZE(AO, %rax, SIZE), %xmm1 ;\ VFMADD_R %xmm12,%xmm4,%xmm1,%xmm12 ;\ vbroadcastss -7 * SIZE(BO, BI, SIZE), %xmm5 ;\ VFMADD_I %xmm9,%xmm5,%xmm0,%xmm9 ;\ VFMADD_I %xmm13,%xmm5,%xmm1,%xmm13 ;\ vbroadcastss -6 * SIZE(BO, BI, SIZE), %xmm6 ;\ VFMADD_R %xmm10,%xmm6,%xmm0,%xmm10 ;\ VFMADD_R %xmm14,%xmm6,%xmm1,%xmm14 ;\ vbroadcastss -5 * SIZE(BO, BI, SIZE), %xmm7 ;\ VFMADD_I %xmm11,%xmm7,%xmm0,%xmm11 ;\ VFMADD_I %xmm15,%xmm7,%xmm1,%xmm15 ;\ #define KERNEL4x2_2(xx) \ vmovups -8 * SIZE(AO, %rax, SIZE), %xmm0 ;\ vbroadcastss -4 * SIZE(BO, BI, SIZE), %xmm4 ;\ VFMADD_R %xmm8,%xmm4,%xmm0,%xmm8 ;\ vmovups -4 * SIZE(AO, %rax, SIZE), %xmm1 ;\ VFMADD_R %xmm12,%xmm4,%xmm1,%xmm12 ;\ vbroadcastss -3 * SIZE(BO, BI, SIZE), %xmm5 ;\ VFMADD_I %xmm9,%xmm5,%xmm0,%xmm9 ;\ VFMADD_I %xmm13,%xmm5,%xmm1,%xmm13 ;\ vbroadcastss -2 * SIZE(BO, BI, SIZE), %xmm6 ;\ VFMADD_R %xmm10,%xmm6,%xmm0,%xmm10 ;\ VFMADD_R %xmm14,%xmm6,%xmm1,%xmm14 ;\ vbroadcastss -1 * SIZE(BO, BI, SIZE), %xmm7 ;\ VFMADD_I %xmm11,%xmm7,%xmm0,%xmm11 ;\ VFMADD_I %xmm15,%xmm7,%xmm1,%xmm15 ;\ #define KERNEL4x2_3(xx) \ prefetcht0 A_PR1+64(AO,%rax,SIZE) ;\ vmovups 0 * SIZE(AO, %rax, SIZE), %xmm0 ;\ vbroadcastss 0 * SIZE(BO, BI, SIZE), %xmm4 ;\ VFMADD_R %xmm8,%xmm4,%xmm0,%xmm8 ;\ vmovups 4 * SIZE(AO, %rax, SIZE), %xmm1 ;\ VFMADD_R %xmm12,%xmm4,%xmm1,%xmm12 ;\ vbroadcastss 1 * SIZE(BO, BI, SIZE), %xmm5 ;\ VFMADD_I %xmm9,%xmm5,%xmm0,%xmm9 ;\ VFMADD_I %xmm13,%xmm5,%xmm1,%xmm13 ;\ vbroadcastss 2 * SIZE(BO, BI, SIZE), %xmm6 ;\ VFMADD_R %xmm10,%xmm6,%xmm0,%xmm10 ;\ VFMADD_R %xmm14,%xmm6,%xmm1,%xmm14 ;\ vbroadcastss 3 * SIZE(BO, BI, SIZE), %xmm7 ;\ VFMADD_I %xmm11,%xmm7,%xmm0,%xmm11 ;\ VFMADD_I %xmm15,%xmm7,%xmm1,%xmm15 ;\ #define KERNEL4x2_4(xx) \ vmovups 8 * SIZE(AO, %rax, SIZE), %xmm0 ;\ vbroadcastss 4 * SIZE(BO, BI, SIZE), %xmm4 ;\ VFMADD_R %xmm8,%xmm4,%xmm0,%xmm8 ;\ vmovups 12 * SIZE(AO, %rax, SIZE), %xmm1 ;\ VFMADD_R %xmm12,%xmm4,%xmm1,%xmm12 ;\ vbroadcastss 5 * SIZE(BO, BI, SIZE), %xmm5 ;\ VFMADD_I %xmm9,%xmm5,%xmm0,%xmm9 ;\ VFMADD_I %xmm13,%xmm5,%xmm1,%xmm13 ;\ vbroadcastss 6 * SIZE(BO, BI, SIZE), %xmm6 ;\ VFMADD_R %xmm10,%xmm6,%xmm0,%xmm10 ;\ VFMADD_R %xmm14,%xmm6,%xmm1,%xmm14 ;\ vbroadcastss 7 * SIZE(BO, BI, SIZE), %xmm7 ;\ VFMADD_I %xmm11,%xmm7,%xmm0,%xmm11 ;\ VFMADD_I %xmm15,%xmm7,%xmm1,%xmm15 ;\ addq $16, BI ;\ addq $32, %rax ;\ #define KERNEL4x2_SUB(xx) \ vmovups -16 * SIZE(AO, %rax, SIZE), %xmm0 ;\ vbroadcastss -8 * SIZE(BO, BI, SIZE), %xmm4 ;\ VFMADD_R %xmm8,%xmm4,%xmm0,%xmm8 ;\ vmovups -12 * SIZE(AO, %rax, SIZE), %xmm1 ;\ VFMADD_R %xmm12,%xmm4,%xmm1,%xmm12 ;\ vbroadcastss -7 * SIZE(BO, BI, SIZE), %xmm5 ;\ VFMADD_I %xmm9,%xmm5,%xmm0,%xmm9 ;\ VFMADD_I %xmm13,%xmm5,%xmm1,%xmm13 ;\ vbroadcastss -6 * SIZE(BO, BI, SIZE), %xmm6 ;\ VFMADD_R %xmm10,%xmm6,%xmm0,%xmm10 ;\ VFMADD_R %xmm14,%xmm6,%xmm1,%xmm14 ;\ vbroadcastss -5 * SIZE(BO, BI, SIZE), %xmm7 ;\ VFMADD_I %xmm11,%xmm7,%xmm0,%xmm11 ;\ VFMADD_I %xmm15,%xmm7,%xmm1,%xmm15 ;\ addq $4, BI ;\ addq $8, %rax ;\ /************************************************************************************************/ #define KERNEL2x2_1(xx) \ prefetcht0 A_PR1(AO,%rax,SIZE) ;\ vmovups -16 * SIZE(AO, %rax, SIZE), %xmm0 ;\ vbroadcastss -8 * SIZE(BO, BI, SIZE), %xmm4 ;\ VFMADD_R %xmm8,%xmm4,%xmm0,%xmm8 ;\ vbroadcastss -7 * SIZE(BO, BI, SIZE), %xmm5 ;\ VFMADD_I %xmm9,%xmm5,%xmm0,%xmm9 ;\ vbroadcastss -6 * SIZE(BO, BI, SIZE), %xmm6 ;\ VFMADD_R %xmm10,%xmm6,%xmm0,%xmm10 ;\ vbroadcastss -5 * SIZE(BO, BI, SIZE), %xmm7 ;\ VFMADD_I %xmm11,%xmm7,%xmm0,%xmm11 ;\ #define KERNEL2x2_2(xx) \ vmovups -12 * SIZE(AO, %rax, SIZE), %xmm0 ;\ vbroadcastss -4 * SIZE(BO, BI, SIZE), %xmm4 ;\ VFMADD_R %xmm8,%xmm4,%xmm0,%xmm8 ;\ VFMADD_R %xmm12,%xmm4,%xmm1,%xmm12 ;\ vbroadcastss -3 * SIZE(BO, BI, SIZE), %xmm5 ;\ VFMADD_I %xmm9,%xmm5,%xmm0,%xmm9 ;\ vbroadcastss -2 * SIZE(BO, BI, SIZE), %xmm6 ;\ VFMADD_R %xmm10,%xmm6,%xmm0,%xmm10 ;\ vbroadcastss -1 * SIZE(BO, BI, SIZE), %xmm7 ;\ VFMADD_I %xmm11,%xmm7,%xmm0,%xmm11 ;\ #define KERNEL2x2_3(xx) \ vmovups -8 * SIZE(AO, %rax, SIZE), %xmm0 ;\ vbroadcastss 0 * SIZE(BO, BI, SIZE), %xmm4 ;\ VFMADD_R %xmm8,%xmm4,%xmm0,%xmm8 ;\ vbroadcastss 1 * SIZE(BO, BI, SIZE), %xmm5 ;\ VFMADD_I %xmm9,%xmm5,%xmm0,%xmm9 ;\ vbroadcastss 2 * SIZE(BO, BI, SIZE), %xmm6 ;\ VFMADD_R %xmm10,%xmm6,%xmm0,%xmm10 ;\ vbroadcastss 3 * SIZE(BO, BI, SIZE), %xmm7 ;\ VFMADD_I %xmm11,%xmm7,%xmm0,%xmm11 ;\ #define KERNEL2x2_4(xx) \ vmovups -4 * SIZE(AO, %rax, SIZE), %xmm0 ;\ vbroadcastss 4 * SIZE(BO, BI, SIZE), %xmm4 ;\ VFMADD_R %xmm8,%xmm4,%xmm0,%xmm8 ;\ vbroadcastss 5 * SIZE(BO, BI, SIZE), %xmm5 ;\ VFMADD_I %xmm9,%xmm5,%xmm0,%xmm9 ;\ vbroadcastss 6 * SIZE(BO, BI, SIZE), %xmm6 ;\ VFMADD_R %xmm10,%xmm6,%xmm0,%xmm10 ;\ vbroadcastss 7 * SIZE(BO, BI, SIZE), %xmm7 ;\ VFMADD_I %xmm11,%xmm7,%xmm0,%xmm11 ;\ addq $16, BI ;\ addq $16, %rax ;\ #define KERNEL2x2_SUB(xx) \ vmovups -16 * SIZE(AO, %rax, SIZE), %xmm0 ;\ vbroadcastss -8 * SIZE(BO, BI, SIZE), %xmm4 ;\ VFMADD_R %xmm8,%xmm4,%xmm0,%xmm8 ;\ vbroadcastss -7 * SIZE(BO, BI, SIZE), %xmm5 ;\ VFMADD_I %xmm9,%xmm5,%xmm0,%xmm9 ;\ vbroadcastss -6 * SIZE(BO, BI, SIZE), %xmm6 ;\ VFMADD_R %xmm10,%xmm6,%xmm0,%xmm10 ;\ vbroadcastss -5 * SIZE(BO, BI, SIZE), %xmm7 ;\ VFMADD_I %xmm11,%xmm7,%xmm0,%xmm11 ;\ addq $4, BI ;\ addq $4, %rax ;\ /************************************************************************************************/ #define KERNEL1x2_1(xx) \ vmovsd -16 * SIZE(AO, %rax, SIZE), %xmm0 ;\ vbroadcastss -8 * SIZE(BO, BI, SIZE), %xmm4 ;\ VFMADD_R %xmm8,%xmm4,%xmm0,%xmm8 ;\ vbroadcastss -7 * SIZE(BO, BI, SIZE), %xmm5 ;\ VFMADD_I %xmm9,%xmm5,%xmm0,%xmm9 ;\ vbroadcastss -6 * SIZE(BO, BI, SIZE), %xmm6 ;\ VFMADD_R %xmm10,%xmm6,%xmm0,%xmm10 ;\ vbroadcastss -5 * SIZE(BO, BI, SIZE), %xmm7 ;\ VFMADD_I %xmm11,%xmm7,%xmm0,%xmm11 ;\ #define KERNEL1x2_2(xx) \ vmovsd -14 * SIZE(AO, %rax, SIZE), %xmm0 ;\ vbroadcastss -4 * SIZE(BO, BI, SIZE), %xmm4 ;\ VFMADD_R %xmm8,%xmm4,%xmm0,%xmm8 ;\ VFMADD_R %xmm12,%xmm4,%xmm1,%xmm12 ;\ vbroadcastss -3 * SIZE(BO, BI, SIZE), %xmm5 ;\ VFMADD_I %xmm9,%xmm5,%xmm0,%xmm9 ;\ vbroadcastss -2 * SIZE(BO, BI, SIZE), %xmm6 ;\ VFMADD_R %xmm10,%xmm6,%xmm0,%xmm10 ;\ vbroadcastss -1 * SIZE(BO, BI, SIZE), %xmm7 ;\ VFMADD_I %xmm11,%xmm7,%xmm0,%xmm11 ;\ #define KERNEL1x2_3(xx) \ vmovsd -12 * SIZE(AO, %rax, SIZE), %xmm0 ;\ vbroadcastss 0 * SIZE(BO, BI, SIZE), %xmm4 ;\ VFMADD_R %xmm8,%xmm4,%xmm0,%xmm8 ;\ vbroadcastss 1 * SIZE(BO, BI, SIZE), %xmm5 ;\ VFMADD_I %xmm9,%xmm5,%xmm0,%xmm9 ;\ vbroadcastss 2 * SIZE(BO, BI, SIZE), %xmm6 ;\ VFMADD_R %xmm10,%xmm6,%xmm0,%xmm10 ;\ vbroadcastss 3 * SIZE(BO, BI, SIZE), %xmm7 ;\ VFMADD_I %xmm11,%xmm7,%xmm0,%xmm11 ;\ #define KERNEL1x2_4(xx) \ vmovsd -10 * SIZE(AO, %rax, SIZE), %xmm0 ;\ vbroadcastss 4 * SIZE(BO, BI, SIZE), %xmm4 ;\ VFMADD_R %xmm8,%xmm4,%xmm0,%xmm8 ;\ vbroadcastss 5 * SIZE(BO, BI, SIZE), %xmm5 ;\ VFMADD_I %xmm9,%xmm5,%xmm0,%xmm9 ;\ vbroadcastss 6 * SIZE(BO, BI, SIZE), %xmm6 ;\ VFMADD_R %xmm10,%xmm6,%xmm0,%xmm10 ;\ vbroadcastss 7 * SIZE(BO, BI, SIZE), %xmm7 ;\ VFMADD_I %xmm11,%xmm7,%xmm0,%xmm11 ;\ addq $16, BI ;\ addq $8, %rax ;\ #define KERNEL1x2_SUB(xx) \ vmovsd -16 * SIZE(AO, %rax, SIZE), %xmm0 ;\ vbroadcastss -8 * SIZE(BO, BI, SIZE), %xmm4 ;\ VFMADD_R %xmm8,%xmm4,%xmm0,%xmm8 ;\ vbroadcastss -7 * SIZE(BO, BI, SIZE), %xmm5 ;\ VFMADD_I %xmm9,%xmm5,%xmm0,%xmm9 ;\ vbroadcastss -6 * SIZE(BO, BI, SIZE), %xmm6 ;\ VFMADD_R %xmm10,%xmm6,%xmm0,%xmm10 ;\ vbroadcastss -5 * SIZE(BO, BI, SIZE), %xmm7 ;\ VFMADD_I %xmm11,%xmm7,%xmm0,%xmm11 ;\ addq $4, BI ;\ addq $2, %rax ;\ /************************************************************************************************/ #define KERNEL4x1_1(xx) \ prefetcht0 A_PR1(AO,%rax,SIZE) ;\ vmovups -16 * SIZE(AO, %rax, SIZE), %xmm0 ;\ vbroadcastss -4 * SIZE(BO, BI, SIZE), %xmm4 ;\ VFMADD_R %xmm8,%xmm4,%xmm0,%xmm8 ;\ vmovups -12 * SIZE(AO, %rax, SIZE), %xmm1 ;\ VFMADD_R %xmm12,%xmm4,%xmm1,%xmm12 ;\ vbroadcastss -3 * SIZE(BO, BI, SIZE), %xmm5 ;\ VFMADD_I %xmm9,%xmm5,%xmm0,%xmm9 ;\ VFMADD_I %xmm13,%xmm5,%xmm1,%xmm13 ;\ #define KERNEL4x1_2(xx) \ vmovups -8 * SIZE(AO, %rax, SIZE), %xmm0 ;\ vbroadcastss -2 * SIZE(BO, BI, SIZE), %xmm4 ;\ VFMADD_R %xmm8,%xmm4,%xmm0,%xmm8 ;\ vmovups -4 * SIZE(AO, %rax, SIZE), %xmm1 ;\ VFMADD_R %xmm12,%xmm4,%xmm1,%xmm12 ;\ vbroadcastss -1 * SIZE(BO, BI, SIZE), %xmm5 ;\ VFMADD_I %xmm9,%xmm5,%xmm0,%xmm9 ;\ VFMADD_I %xmm13,%xmm5,%xmm1,%xmm13 ;\ #define KERNEL4x1_3(xx) \ prefetcht0 A_PR1+64(AO,%rax,SIZE) ;\ vmovups 0 * SIZE(AO, %rax, SIZE), %xmm0 ;\ vbroadcastss 0 * SIZE(BO, BI, SIZE), %xmm4 ;\ VFMADD_R %xmm8,%xmm4,%xmm0,%xmm8 ;\ vmovups 4 * SIZE(AO, %rax, SIZE), %xmm1 ;\ VFMADD_R %xmm12,%xmm4,%xmm1,%xmm12 ;\ vbroadcastss 1 * SIZE(BO, BI, SIZE), %xmm5 ;\ VFMADD_I %xmm9,%xmm5,%xmm0,%xmm9 ;\ VFMADD_I %xmm13,%xmm5,%xmm1,%xmm13 ;\ #define KERNEL4x1_4(xx) \ vmovups 8 * SIZE(AO, %rax, SIZE), %xmm0 ;\ vbroadcastss 2 * SIZE(BO, BI, SIZE), %xmm4 ;\ VFMADD_R %xmm8,%xmm4,%xmm0,%xmm8 ;\ vmovups 12 * SIZE(AO, %rax, SIZE), %xmm1 ;\ VFMADD_R %xmm12,%xmm4,%xmm1,%xmm12 ;\ vbroadcastss 3 * SIZE(BO, BI, SIZE), %xmm5 ;\ VFMADD_I %xmm9,%xmm5,%xmm0,%xmm9 ;\ VFMADD_I %xmm13,%xmm5,%xmm1,%xmm13 ;\ addq $8, BI ;\ addq $32, %rax ;\ #define KERNEL4x1_SUB(xx) \ vmovups -16 * SIZE(AO, %rax, SIZE), %xmm0 ;\ vbroadcastss -4 * SIZE(BO, BI, SIZE), %xmm4 ;\ VFMADD_R %xmm8,%xmm4,%xmm0,%xmm8 ;\ vmovups -12 * SIZE(AO, %rax, SIZE), %xmm1 ;\ VFMADD_R %xmm12,%xmm4,%xmm1,%xmm12 ;\ vbroadcastss -3 * SIZE(BO, BI, SIZE), %xmm5 ;\ VFMADD_I %xmm9,%xmm5,%xmm0,%xmm9 ;\ VFMADD_I %xmm13,%xmm5,%xmm1,%xmm13 ;\ addq $2, BI ;\ addq $8, %rax ;\ /************************************************************************************************/ #define KERNEL2x1_1(xx) \ prefetcht0 A_PR1(AO,%rax,SIZE) ;\ vmovups -16 * SIZE(AO, %rax, SIZE), %xmm0 ;\ vbroadcastss -4 * SIZE(BO, BI, SIZE), %xmm4 ;\ VFMADD_R %xmm8,%xmm4,%xmm0,%xmm8 ;\ vbroadcastss -3 * SIZE(BO, BI, SIZE), %xmm5 ;\ VFMADD_I %xmm9,%xmm5,%xmm0,%xmm9 ;\ #define KERNEL2x1_2(xx) \ vmovups -12 * SIZE(AO, %rax, SIZE), %xmm0 ;\ vbroadcastss -2 * SIZE(BO, BI, SIZE), %xmm4 ;\ VFMADD_R %xmm8,%xmm4,%xmm0,%xmm8 ;\ vbroadcastss -1 * SIZE(BO, BI, SIZE), %xmm5 ;\ VFMADD_I %xmm9,%xmm5,%xmm0,%xmm9 ;\ #define KERNEL2x1_3(xx) \ vmovups -8 * SIZE(AO, %rax, SIZE), %xmm0 ;\ vbroadcastss 0 * SIZE(BO, BI, SIZE), %xmm4 ;\ VFMADD_R %xmm8,%xmm4,%xmm0,%xmm8 ;\ vbroadcastss 1 * SIZE(BO, BI, SIZE), %xmm5 ;\ VFMADD_I %xmm9,%xmm5,%xmm0,%xmm9 ;\ #define KERNEL2x1_4(xx) \ vmovups -4 * SIZE(AO, %rax, SIZE), %xmm0 ;\ vbroadcastss 2 * SIZE(BO, BI, SIZE), %xmm4 ;\ VFMADD_R %xmm8,%xmm4,%xmm0,%xmm8 ;\ vbroadcastss 3 * SIZE(BO, BI, SIZE), %xmm5 ;\ VFMADD_I %xmm9,%xmm5,%xmm0,%xmm9 ;\ addq $8, BI ;\ addq $16, %rax ;\ #define KERNEL2x1_SUB(xx) \ vmovups -16 * SIZE(AO, %rax, SIZE), %xmm0 ;\ vbroadcastss -4 * SIZE(BO, BI, SIZE), %xmm4 ;\ VFMADD_R %xmm8,%xmm4,%xmm0,%xmm8 ;\ vbroadcastss -3 * SIZE(BO, BI, SIZE), %xmm5 ;\ VFMADD_I %xmm9,%xmm5,%xmm0,%xmm9 ;\ addq $2, BI ;\ addq $4, %rax ;\ /************************************************************************************************/ #define KERNEL1x1_1(xx) \ vmovsd -16 * SIZE(AO, %rax, SIZE), %xmm0 ;\ vbroadcastss -4 * SIZE(BO, BI, SIZE), %xmm4 ;\ VFMADD_R %xmm8,%xmm4,%xmm0,%xmm8 ;\ vbroadcastss -3 * SIZE(BO, BI, SIZE), %xmm5 ;\ VFMADD_I %xmm9,%xmm5,%xmm0,%xmm9 ;\ #define KERNEL1x1_2(xx) \ vmovsd -14 * SIZE(AO, %rax, SIZE), %xmm0 ;\ vbroadcastss -2 * SIZE(BO, BI, SIZE), %xmm4 ;\ VFMADD_R %xmm8,%xmm4,%xmm0,%xmm8 ;\ vbroadcastss -1 * SIZE(BO, BI, SIZE), %xmm5 ;\ VFMADD_I %xmm9,%xmm5,%xmm0,%xmm9 ;\ #define KERNEL1x1_3(xx) \ vmovsd -12 * SIZE(AO, %rax, SIZE), %xmm0 ;\ vbroadcastss 0 * SIZE(BO, BI, SIZE), %xmm4 ;\ VFMADD_R %xmm8,%xmm4,%xmm0,%xmm8 ;\ vbroadcastss 1 * SIZE(BO, BI, SIZE), %xmm5 ;\ VFMADD_I %xmm9,%xmm5,%xmm0,%xmm9 ;\ #define KERNEL1x1_4(xx) \ vmovsd -10 * SIZE(AO, %rax, SIZE), %xmm0 ;\ vbroadcastss 2 * SIZE(BO, BI, SIZE), %xmm4 ;\ VFMADD_R %xmm8,%xmm4,%xmm0,%xmm8 ;\ vbroadcastss 3 * SIZE(BO, BI, SIZE), %xmm5 ;\ VFMADD_I %xmm9,%xmm5,%xmm0,%xmm9 ;\ addq $8, BI ;\ addq $8, %rax ;\ #define KERNEL1x1_SUB(xx) \ vmovsd -16 * SIZE(AO, %rax, SIZE), %xmm0 ;\ vbroadcastss -4 * SIZE(BO, BI, SIZE), %xmm4 ;\ VFMADD_R %xmm8,%xmm4,%xmm0,%xmm8 ;\ vbroadcastss -3 * SIZE(BO, BI, SIZE), %xmm5 ;\ VFMADD_I %xmm9,%xmm5,%xmm0,%xmm9 ;\ addq $2, BI ;\ addq $2, %rax ;\ /************************************************************************************************/ PROLOGUE PROFCODE subq $STACKSIZE, %rsp movq %rbx, (%rsp) movq %rbp, 8(%rsp) movq %r12, 16(%rsp) movq %r13, 24(%rsp) movq %r14, 32(%rsp) movq %r15, 40(%rsp) vzeroupper #ifdef WINDOWS_ABI movq %rdi, 48(%rsp) movq %rsi, 56(%rsp) vmovups %xmm6, 64(%rsp) vmovups %xmm7, 80(%rsp) vmovups %xmm8, 96(%rsp) vmovups %xmm9, 112(%rsp) vmovups %xmm10, 128(%rsp) vmovups %xmm11, 144(%rsp) vmovups %xmm12, 160(%rsp) vmovups %xmm13, 176(%rsp) vmovups %xmm14, 192(%rsp) vmovups %xmm15, 208(%rsp) movq ARG1, OLD_M movq ARG2, OLD_N movq ARG3, OLD_K movq OLD_A, A movq OLD_B, B movq OLD_C, C movq OLD_LDC, LDC #ifdef TRMMKERNEL vmovsd OLD_OFFSET, %xmm12 #endif vmovaps %xmm3, %xmm0 vmovsd OLD_ALPHA_I, %xmm1 #else movq STACKSIZE + 8(%rsp), LDC #ifdef TRMMKERNEL vmovsd STACKSIZE + 16(%rsp), %xmm12 #endif #endif movq %rsp, SP # save old stack subq $128 + L_BUFFER_SIZE, %rsp andq $-4096, %rsp # align stack STACK_TOUCH cmpq $0, OLD_M je .L999 cmpq $0, OLD_N je .L999 cmpq $0, OLD_K je .L999 movq OLD_M, M movq OLD_N, N movq OLD_K, K vmovss %xmm0, ALPHA_R vmovss %xmm1, ALPHA_I salq $ZBASE_SHIFT, LDC movq N, %rax xorq %rdx, %rdx movq $2, %rdi divq %rdi // N / 2 movq %rax, Ndiv6 // N / 2 movq %rdx, Nmod6 // N % 2 #ifdef TRMMKERNEL vmovsd %xmm12, OFFSET vmovsd %xmm12, KK #ifndef LEFT negq KK #endif #endif .L2_0: movq Ndiv6, J cmpq $0, J je .L1_0 ALIGN_4 .L2_01: // copy to sub buffer movq B, BO1 leaq BUFFER1, BO // first buffer to BO movq K, %rax ALIGN_4 .L2_02b: vmovups (BO1), %xmm0 vmovups %xmm0, (BO) addq $4*SIZE,BO1 addq $4*SIZE,BO decq %rax jnz .L2_02b .L2_02c: movq BO1, B // next offset of B .L2_10: movq C, CO1 leaq (C, LDC, 2), C // c += 2 * ldc #if defined(TRMMKERNEL) && defined(LEFT) movq OFFSET, %rax movq %rax, KK #endif movq A, AO // aoffset = a addq $16 * SIZE, AO movq M, I sarq $2, I // i = (m >> 2) je .L2_20 ALIGN_4 .L2_11: #if !defined(TRMMKERNEL) || \ (defined(TRMMKERNEL) && defined(LEFT) && defined(TRANSA)) || \ (defined(TRMMKERNEL) && !defined(LEFT) && !defined(TRANSA)) leaq BUFFER1, BO // first buffer to BO addq $8 * SIZE, BO #else movq KK, %rax leaq BUFFER1, BO // first buffer to BO addq $8 * SIZE, BO movq %rax, BI // Index for BO leaq (,BI,4), BI // BI = BI * 4 ; number of values leaq (BO, BI, SIZE), BO salq $3, %rax // rax = rax * 8 ; number of values leaq (AO, %rax, SIZE), AO #endif vzeroall #ifndef TRMMKERNEL movq K, %rax #elif (defined(LEFT) && !defined(TRANSA)) || (!defined(LEFT) && defined(TRANSA)) movq K, %rax subq KK, %rax movq %rax, KKK #else movq KK, %rax #ifdef LEFT addq $4, %rax // number of values in AO #else addq $2, %rax // number of values in BO #endif movq %rax, KKK #endif andq $-8, %rax // K = K - ( K % 8 ) je .L2_16 movq %rax, BI // Index for BO leaq ( ,BI,4), BI // BI = BI * 4 ; number of values salq $3, %rax // rax = rax * 8 ; number of values leaq (AO, %rax, SIZE), AO leaq (BO, BI, SIZE), BO negq BI negq %rax ALIGN_4 .L2_12: prefetcht0 B_PR1(BO,BI,SIZE) KERNEL4x2_1(xxx) KERNEL4x2_2(xxx) KERNEL4x2_3(xxx) KERNEL4x2_4(xxx) prefetcht0 B_PR1(BO,BI,SIZE) KERNEL4x2_1(xxx) KERNEL4x2_2(xxx) KERNEL4x2_3(xxx) KERNEL4x2_4(xxx) je .L2_16 prefetcht0 B_PR1(BO,BI,SIZE) KERNEL4x2_1(xxx) KERNEL4x2_2(xxx) KERNEL4x2_3(xxx) KERNEL4x2_4(xxx) prefetcht0 B_PR1(BO,BI,SIZE) KERNEL4x2_1(xxx) KERNEL4x2_2(xxx) KERNEL4x2_3(xxx) KERNEL4x2_4(xxx) je .L2_16 jmp .L2_12 ALIGN_4 .L2_16: #ifndef TRMMKERNEL movq K, %rax #else movq KKK, %rax #endif andq $7, %rax # if (k & 1) je .L2_19 movq %rax, BI // Index for BO leaq ( ,BI,4), BI // BI = BI * 4 ; number of values salq $3, %rax // rax = rax * 8 ; number of values leaq (AO, %rax, SIZE), AO leaq (BO, BI, SIZE), BO negq BI negq %rax ALIGN_4 .L2_17: KERNEL4x2_SUB(xxx) jl .L2_17 ALIGN_4 .L2_19: vbroadcastss ALPHA_R, %xmm0 vbroadcastss ALPHA_I, %xmm1 // swap high and low 64 bytes vshufps $0xb1, %xmm9 , %xmm9, %xmm9 vshufps $0xb1, %xmm11, %xmm11, %xmm11 vshufps $0xb1, %xmm13, %xmm13, %xmm13 vshufps $0xb1, %xmm15, %xmm15, %xmm15 #if defined(NN) || defined(NT) || defined(TN) || defined(TT) || \ defined(NR) || defined(NC) || defined(TR) || defined(TC) vaddsubps %xmm9, %xmm8 , %xmm8 vaddsubps %xmm11,%xmm10, %xmm10 vaddsubps %xmm13,%xmm12, %xmm12 vaddsubps %xmm15,%xmm14, %xmm14 vshufps $0xb1, %xmm8 , %xmm8, %xmm9 vshufps $0xb1, %xmm10, %xmm10, %xmm11 vshufps $0xb1, %xmm12, %xmm12, %xmm13 vshufps $0xb1, %xmm14, %xmm14, %xmm15 #else vaddsubps %xmm8, %xmm9 ,%xmm9 vaddsubps %xmm10, %xmm11,%xmm11 vaddsubps %xmm12, %xmm13,%xmm13 vaddsubps %xmm14, %xmm15,%xmm15 vmovaps %xmm9, %xmm8 vmovaps %xmm11, %xmm10 vmovaps %xmm13, %xmm12 vmovaps %xmm15, %xmm14 // swap high and low 64 bytes vshufps $0xb1, %xmm9 , %xmm9, %xmm9 vshufps $0xb1, %xmm11, %xmm11, %xmm11 vshufps $0xb1, %xmm13, %xmm13, %xmm13 vshufps $0xb1, %xmm15, %xmm15, %xmm15 #endif // multiply with ALPHA_R vmulps %xmm8 , %xmm0, %xmm8 vmulps %xmm10, %xmm0, %xmm10 vmulps %xmm12, %xmm0, %xmm12 vmulps %xmm14, %xmm0, %xmm14 // multiply with ALPHA_I vmulps %xmm9 , %xmm1, %xmm9 vmulps %xmm11, %xmm1, %xmm11 vmulps %xmm13, %xmm1, %xmm13 vmulps %xmm15, %xmm1, %xmm15 vaddsubps %xmm9, %xmm8 , %xmm8 vaddsubps %xmm11,%xmm10, %xmm10 vaddsubps %xmm13,%xmm12, %xmm12 vaddsubps %xmm15,%xmm14, %xmm14 #ifndef TRMMKERNEL vaddps (CO1), %xmm8 , %xmm8 vaddps 4 * SIZE(CO1), %xmm12, %xmm12 vaddps (CO1, LDC), %xmm10, %xmm10 vaddps 4 * SIZE(CO1, LDC), %xmm14, %xmm14 #endif vmovups %xmm8 , (CO1) vmovups %xmm12 , 4 * SIZE(CO1) vmovups %xmm10 , (CO1, LDC) vmovups %xmm14 , 4 * SIZE(CO1, LDC) #if (defined(TRMMKERNEL) && defined(LEFT) && defined(TRANSA)) || \ (defined(TRMMKERNEL) && !defined(LEFT) && !defined(TRANSA)) movq K, %rax subq KKK, %rax movq %rax, BI // Index for BO leaq ( ,BI,4), BI // BI = BI * 4 ; number of values leaq (BO, BI, SIZE), BO salq $3, %rax // rax = rax * 8 ; number of values leaq (AO, %rax, SIZE), AO #endif #if defined(TRMMKERNEL) && defined(LEFT) addq $4, KK #endif addq $8 * SIZE, CO1 # coffset += 8 decq I # i -- jg .L2_11 ALIGN_4 /************************************************************************** * Rest of M ***************************************************************************/ .L2_20: testq $3, M jz .L2_60 // to next 2 lines of N testq $2, M jz .L2_40 ALIGN_4 .L2_21: #if !defined(TRMMKERNEL) || \ (defined(TRMMKERNEL) && defined(LEFT) && defined(TRANSA)) || \ (defined(TRMMKERNEL) && !defined(LEFT) && !defined(TRANSA)) leaq BUFFER1, BO // first buffer to BO addq $8 * SIZE, BO #else movq KK, %rax leaq BUFFER1, BO // first buffer to BO addq $8 * SIZE, BO movq %rax, BI // Index for BO leaq (,BI,4), BI // BI = BI * 4 ; number of values leaq (BO, BI, SIZE), BO salq $2, %rax // rax = rax * 4 ; number of values leaq (AO, %rax, SIZE), AO #endif vzeroall #ifndef TRMMKERNEL movq K, %rax #elif (defined(LEFT) && !defined(TRANSA)) || (!defined(LEFT) && defined(TRANSA)) movq K, %rax subq KK, %rax movq %rax, KKK #else movq KK, %rax #ifdef LEFT addq $2, %rax // number of values in AO #else addq $2, %rax // number of values in BO #endif movq %rax, KKK #endif andq $-8, %rax // K = K - ( K % 8 ) je .L2_26 movq %rax, BI // Index for BO leaq ( ,BI,4), BI // BI = BI * 4 ; number of values salq $2, %rax // rax = rax * 4 ; number of values leaq (AO, %rax, SIZE), AO leaq (BO, BI, SIZE), BO negq BI negq %rax ALIGN_4 .L2_22: prefetcht0 B_PR1(BO,BI,SIZE) KERNEL2x2_1(xxx) KERNEL2x2_2(xxx) KERNEL2x2_3(xxx) KERNEL2x2_4(xxx) prefetcht0 B_PR1(BO,BI,SIZE) KERNEL2x2_1(xxx) KERNEL2x2_2(xxx) KERNEL2x2_3(xxx) KERNEL2x2_4(xxx) je .L2_26 prefetcht0 B_PR1(BO,BI,SIZE) KERNEL2x2_1(xxx) KERNEL2x2_2(xxx) KERNEL2x2_3(xxx) KERNEL2x2_4(xxx) prefetcht0 B_PR1(BO,BI,SIZE) KERNEL2x2_1(xxx) KERNEL2x2_2(xxx) KERNEL2x2_3(xxx) KERNEL2x2_4(xxx) je .L2_26 jmp .L2_22 ALIGN_4 .L2_26: #ifndef TRMMKERNEL movq K, %rax #else movq KKK, %rax #endif andq $7, %rax # if (k & 1) je .L2_29 movq %rax, BI // Index for BO leaq ( ,BI,4), BI // BI = BI * 4 ; number of values salq $2, %rax // rax = rax * 4 ; number of values leaq (AO, %rax, SIZE), AO leaq (BO, BI, SIZE), BO negq BI negq %rax ALIGN_4 .L2_27: KERNEL2x2_SUB(xxx) jl .L2_27 ALIGN_4 .L2_29: vbroadcastss ALPHA_R, %xmm0 vbroadcastss ALPHA_I, %xmm1 // swap high and low 64 bytes vshufps $0xb1, %xmm9 , %xmm9, %xmm9 vshufps $0xb1, %xmm11, %xmm11, %xmm11 #if defined(NN) || defined(NT) || defined(TN) || defined(TT) || \ defined(NR) || defined(NC) || defined(TR) || defined(TC) vaddsubps %xmm9, %xmm8 , %xmm8 vaddsubps %xmm11,%xmm10, %xmm10 vshufps $0xb1, %xmm8 , %xmm8, %xmm9 vshufps $0xb1, %xmm10, %xmm10, %xmm11 #else vaddsubps %xmm8, %xmm9 ,%xmm9 vaddsubps %xmm10, %xmm11,%xmm11 vmovaps %xmm9, %xmm8 vmovaps %xmm11, %xmm10 // swap high and low 64 bytes vshufps $0xb1, %xmm9 , %xmm9, %xmm9 vshufps $0xb1, %xmm11, %xmm11, %xmm11 #endif // multiply with ALPHA_R vmulps %xmm8 , %xmm0, %xmm8 vmulps %xmm10, %xmm0, %xmm10 // multiply with ALPHA_I vmulps %xmm9 , %xmm1, %xmm9 vmulps %xmm11, %xmm1, %xmm11 vaddsubps %xmm9, %xmm8 , %xmm8 vaddsubps %xmm11,%xmm10, %xmm10 #ifndef TRMMKERNEL vaddps (CO1), %xmm8 , %xmm8 vaddps (CO1, LDC), %xmm10, %xmm10 #endif vmovups %xmm8 , (CO1) vmovups %xmm10 , (CO1, LDC) #if (defined(TRMMKERNEL) && defined(LEFT) && defined(TRANSA)) || \ (defined(TRMMKERNEL) && !defined(LEFT) && !defined(TRANSA)) movq K, %rax subq KKK, %rax movq %rax, BI // Index for BO leaq ( ,BI,4), BI // BI = BI * 4 ; number of values leaq (BO, BI, SIZE), BO salq $2, %rax // rax = rax * 4 ; number of values leaq (AO, %rax, SIZE), AO #endif #if defined(TRMMKERNEL) && defined(LEFT) addq $2, KK #endif addq $4 * SIZE, CO1 # coffset += 4 ALIGN_4 /**************************************************************************/ .L2_40: testq $1, M jz .L2_60 // to next 2 lines of N ALIGN_4 .L2_41: #if !defined(TRMMKERNEL) || \ (defined(TRMMKERNEL) && defined(LEFT) && defined(TRANSA)) || \ (defined(TRMMKERNEL) && !defined(LEFT) && !defined(TRANSA)) leaq BUFFER1, BO // first buffer to BO addq $8 * SIZE, BO #else movq KK, %rax leaq BUFFER1, BO // first buffer to BO addq $8 * SIZE, BO movq %rax, BI // Index for BO leaq (,BI,4), BI // BI = BI * 4 ; number of values leaq (BO, BI, SIZE), BO salq $1, %rax // rax = rax * 2 ; number of values leaq (AO, %rax, SIZE), AO #endif vzeroall #ifndef TRMMKERNEL movq K, %rax #elif (defined(LEFT) && !defined(TRANSA)) || (!defined(LEFT) && defined(TRANSA)) movq K, %rax subq KK, %rax movq %rax, KKK #else movq KK, %rax #ifdef LEFT addq $1, %rax // number of values in AO #else addq $2, %rax // number of values in BO #endif movq %rax, KKK #endif andq $-8, %rax // K = K - ( K % 8 ) je .L2_46 movq %rax, BI // Index for BO leaq ( ,BI,4), BI // BI = BI * 4 ; number of values salq $1, %rax // rax = rax * 2 ; number of values leaq (AO, %rax, SIZE), AO leaq (BO, BI, SIZE), BO negq BI negq %rax ALIGN_4 .L2_42: prefetcht0 B_PR1(BO,BI,SIZE) KERNEL1x2_1(xxx) KERNEL1x2_2(xxx) KERNEL1x2_3(xxx) KERNEL1x2_4(xxx) prefetcht0 B_PR1(BO,BI,SIZE) KERNEL1x2_1(xxx) KERNEL1x2_2(xxx) KERNEL1x2_3(xxx) KERNEL1x2_4(xxx) je .L2_46 prefetcht0 B_PR1(BO,BI,SIZE) KERNEL1x2_1(xxx) KERNEL1x2_2(xxx) KERNEL1x2_3(xxx) KERNEL1x2_4(xxx) prefetcht0 B_PR1(BO,BI,SIZE) KERNEL1x2_1(xxx) KERNEL1x2_2(xxx) KERNEL1x2_3(xxx) KERNEL1x2_4(xxx) je .L2_46 jmp .L2_42 ALIGN_4 .L2_46: #ifndef TRMMKERNEL movq K, %rax #else movq KKK, %rax #endif andq $7, %rax # if (k & 1) je .L2_49 movq %rax, BI // Index for BO leaq ( ,BI,4), BI // BI = BI * 4 ; number of values salq $1, %rax // rax = rax * 2 ; number of values leaq (AO, %rax, SIZE), AO leaq (BO, BI, SIZE), BO negq BI negq %rax ALIGN_4 .L2_47: KERNEL1x2_SUB(xxx) jl .L2_47 ALIGN_4 .L2_49: vbroadcastss ALPHA_R, %xmm0 vbroadcastss ALPHA_I, %xmm1 // swap high and low 64 bytes vshufps $0xb1, %xmm9 , %xmm9, %xmm9 vshufps $0xb1, %xmm11, %xmm11, %xmm11 #if defined(NN) || defined(NT) || defined(TN) || defined(TT) || \ defined(NR) || defined(NC) || defined(TR) || defined(TC) vaddsubps %xmm9, %xmm8 , %xmm8 vaddsubps %xmm11,%xmm10, %xmm10 vshufps $0xb1, %xmm8 , %xmm8, %xmm9 vshufps $0xb1, %xmm10, %xmm10, %xmm11 #else vaddsubps %xmm8, %xmm9 ,%xmm9 vaddsubps %xmm10, %xmm11,%xmm11 vmovaps %xmm9, %xmm8 vmovaps %xmm11, %xmm10 // swap high and low 64 bytes vshufps $0xb1, %xmm9 , %xmm9, %xmm9 vshufps $0xb1, %xmm11, %xmm11, %xmm11 #endif // multiply with ALPHA_R vmulps %xmm8 , %xmm0, %xmm8 vmulps %xmm10, %xmm0, %xmm10 // multiply with ALPHA_I vmulps %xmm9 , %xmm1, %xmm9 vmulps %xmm11, %xmm1, %xmm11 vaddsubps %xmm9, %xmm8 , %xmm8 vaddsubps %xmm11,%xmm10, %xmm10 #ifndef TRMMKERNEL vmovsd (CO1), %xmm14 vaddps %xmm14, %xmm8 , %xmm8 vmovsd (CO1, LDC), %xmm15 vaddps %xmm15, %xmm10, %xmm10 #endif vmovsd %xmm8 , (CO1) vmovsd %xmm10 , (CO1, LDC) #if (defined(TRMMKERNEL) && defined(LEFT) && defined(TRANSA)) || \ (defined(TRMMKERNEL) && !defined(LEFT) && !defined(TRANSA)) movq K, %rax subq KKK, %rax movq %rax, BI // Index for BO leaq ( ,BI,4), BI // BI = BI * 4 ; number of values leaq (BO, BI, SIZE), BO salq $1, %rax // rax = rax * 2 ; number of values leaq (AO, %rax, SIZE), AO #endif #if defined(TRMMKERNEL) && defined(LEFT) addq $1, KK #endif addq $2 * SIZE, CO1 # coffset += 2 ALIGN_4 .L2_60: #if defined(TRMMKERNEL) && !defined(LEFT) addq $2, KK #endif decq J // j -- jg .L2_01 // next 2 lines of N .L1_0: /************************************************************************************************ * Loop for Nmod6 % 2 > 0 *************************************************************************************************/ movq Nmod6, J andq $1, J // j % 2 je .L999 ALIGN_4 .L1_01: // copy to sub buffer movq B, BO1 leaq BUFFER1, BO // first buffer to BO movq K, %rax ALIGN_4 .L1_02b: vmovsd (BO1), %xmm0 vmovsd %xmm0, (BO) addq $2*SIZE,BO1 addq $2*SIZE,BO decq %rax jnz .L1_02b .L1_02c: movq BO1, B // next offset of B .L1_10: movq C, CO1 leaq (C, LDC, 1), C // c += 1 * ldc #if defined(TRMMKERNEL) && defined(LEFT) movq OFFSET, %rax movq %rax, KK #endif movq A, AO // aoffset = a addq $16 * SIZE, AO movq M, I sarq $2, I // i = (m >> 2) je .L1_20 ALIGN_4 .L1_11: #if !defined(TRMMKERNEL) || \ (defined(TRMMKERNEL) && defined(LEFT) && defined(TRANSA)) || \ (defined(TRMMKERNEL) && !defined(LEFT) && !defined(TRANSA)) leaq BUFFER1, BO // first buffer to BO addq $4 * SIZE, BO #else movq KK, %rax leaq BUFFER1, BO // first buffer to BO addq $4 * SIZE, BO movq %rax, BI // Index for BO leaq (,BI,2), BI // BI = BI * 2 ; number of values leaq (BO, BI, SIZE), BO salq $3, %rax // rax = rax * 8 ; number of values leaq (AO, %rax, SIZE), AO #endif vzeroall #ifndef TRMMKERNEL movq K, %rax #elif (defined(LEFT) && !defined(TRANSA)) || (!defined(LEFT) && defined(TRANSA)) movq K, %rax subq KK, %rax movq %rax, KKK #else movq KK, %rax #ifdef LEFT addq $4, %rax // number of values in AO #else addq $1, %rax // number of values in BO #endif movq %rax, KKK #endif andq $-8, %rax // K = K - ( K % 8 ) je .L1_16 movq %rax, BI // Index for BO leaq ( ,BI,2), BI // BI = BI * 2 ; number of values salq $3, %rax // rax = rax * 8 ; number of values leaq (AO, %rax, SIZE), AO leaq (BO, BI, SIZE), BO negq BI negq %rax ALIGN_4 .L1_12: prefetcht0 B_PR1(BO,BI,SIZE) KERNEL4x1_1(xxx) KERNEL4x1_2(xxx) KERNEL4x1_3(xxx) KERNEL4x1_4(xxx) KERNEL4x1_1(xxx) KERNEL4x1_2(xxx) KERNEL4x1_3(xxx) KERNEL4x1_4(xxx) je .L1_16 prefetcht0 B_PR1(BO,BI,SIZE) KERNEL4x1_1(xxx) KERNEL4x1_2(xxx) KERNEL4x1_3(xxx) KERNEL4x1_4(xxx) KERNEL4x1_1(xxx) KERNEL4x1_2(xxx) KERNEL4x1_3(xxx) KERNEL4x1_4(xxx) je .L1_16 jmp .L1_12 ALIGN_4 .L1_16: #ifndef TRMMKERNEL movq K, %rax #else movq KKK, %rax #endif andq $7, %rax # if (k & 1) je .L1_19 movq %rax, BI // Index for BO leaq ( ,BI,2), BI // BI = BI * 4 ; number of values salq $3, %rax // rax = rax * 8 ; number of values leaq (AO, %rax, SIZE), AO leaq (BO, BI, SIZE), BO negq BI negq %rax ALIGN_4 .L1_17: KERNEL4x1_SUB(xxx) jl .L1_17 ALIGN_4 .L1_19: vbroadcastss ALPHA_R, %xmm0 vbroadcastss ALPHA_I, %xmm1 // swap high and low 64 bytes vshufps $0xb1, %xmm9 , %xmm9, %xmm9 vshufps $0xb1, %xmm13, %xmm13, %xmm13 #if defined(NN) || defined(NT) || defined(TN) || defined(TT) || \ defined(NR) || defined(NC) || defined(TR) || defined(TC) vaddsubps %xmm9, %xmm8 , %xmm8 vaddsubps %xmm13,%xmm12, %xmm12 vshufps $0xb1, %xmm8 , %xmm8, %xmm9 vshufps $0xb1, %xmm12, %xmm12, %xmm13 #else vaddsubps %xmm8, %xmm9 ,%xmm9 vaddsubps %xmm12, %xmm13,%xmm13 vmovaps %xmm9, %xmm8 vmovaps %xmm13, %xmm12 // swap high and low 64 bytes vshufps $0xb1, %xmm9 , %xmm9, %xmm9 vshufps $0xb1, %xmm13, %xmm13, %xmm13 #endif // multiply with ALPHA_R vmulps %xmm8 , %xmm0, %xmm8 vmulps %xmm12, %xmm0, %xmm12 // multiply with ALPHA_I vmulps %xmm9 , %xmm1, %xmm9 vmulps %xmm13, %xmm1, %xmm13 vaddsubps %xmm9, %xmm8 , %xmm8 vaddsubps %xmm13,%xmm12, %xmm12 #ifndef TRMMKERNEL vaddps (CO1), %xmm8 , %xmm8 vaddps 4 * SIZE(CO1), %xmm12, %xmm12 #endif vmovups %xmm8 , (CO1) vmovups %xmm12 , 4 * SIZE(CO1) #if (defined(TRMMKERNEL) && defined(LEFT) && defined(TRANSA)) || \ (defined(TRMMKERNEL) && !defined(LEFT) && !defined(TRANSA)) movq K, %rax subq KKK, %rax movq %rax, BI // Index for BO leaq ( ,BI,2), BI // BI = BI * 2 ; number of values leaq (BO, BI, SIZE), BO salq $3, %rax // rax = rax * 8 ; number of values leaq (AO, %rax, SIZE), AO #endif #if defined(TRMMKERNEL) && defined(LEFT) addq $4, KK #endif addq $8 * SIZE, CO1 # coffset += 8 decq I # i -- jg .L1_11 ALIGN_4 /************************************************************************** * Rest of M ***************************************************************************/ .L1_20: testq $3, M jz .L999 testq $2, M jz .L1_40 ALIGN_4 .L1_21: #if !defined(TRMMKERNEL) || \ (defined(TRMMKERNEL) && defined(LEFT) && defined(TRANSA)) || \ (defined(TRMMKERNEL) && !defined(LEFT) && !defined(TRANSA)) leaq BUFFER1, BO // first buffer to BO addq $4 * SIZE, BO #else movq KK, %rax leaq BUFFER1, BO // first buffer to BO addq $4 * SIZE, BO movq %rax, BI // Index for BO leaq (,BI,2), BI // BI = BI * 2 ; number of values leaq (BO, BI, SIZE), BO salq $2, %rax // rax = rax * 4 ; number of values leaq (AO, %rax, SIZE), AO #endif vzeroall #ifndef TRMMKERNEL movq K, %rax #elif (defined(LEFT) && !defined(TRANSA)) || (!defined(LEFT) && defined(TRANSA)) movq K, %rax subq KK, %rax movq %rax, KKK #else movq KK, %rax #ifdef LEFT addq $2, %rax // number of values in AO #else addq $1, %rax // number of values in BO #endif movq %rax, KKK #endif andq $-8, %rax // K = K - ( K % 8 ) je .L1_26 movq %rax, BI // Index for BO leaq ( ,BI,2), BI // BI = BI * 2 ; number of values salq $2, %rax // rax = rax * 4 ; number of values leaq (AO, %rax, SIZE), AO leaq (BO, BI, SIZE), BO negq BI negq %rax ALIGN_4 .L1_22: prefetcht0 B_PR1(BO,BI,SIZE) KERNEL2x1_1(xxx) KERNEL2x1_2(xxx) KERNEL2x1_3(xxx) KERNEL2x1_4(xxx) KERNEL2x1_1(xxx) KERNEL2x1_2(xxx) KERNEL2x1_3(xxx) KERNEL2x1_4(xxx) je .L1_26 prefetcht0 B_PR1(BO,BI,SIZE) KERNEL2x1_1(xxx) KERNEL2x1_2(xxx) KERNEL2x1_3(xxx) KERNEL2x1_4(xxx) KERNEL2x1_1(xxx) KERNEL2x1_2(xxx) KERNEL2x1_3(xxx) KERNEL2x1_4(xxx) je .L1_26 jmp .L1_22 ALIGN_4 .L1_26: #ifndef TRMMKERNEL movq K, %rax #else movq KKK, %rax #endif andq $7, %rax # if (k & 1) je .L1_29 movq %rax, BI // Index for BO leaq ( ,BI,2), BI // BI = BI * 2; number of values salq $2, %rax // rax = rax * 4 ; number of values leaq (AO, %rax, SIZE), AO leaq (BO, BI, SIZE), BO negq BI negq %rax ALIGN_4 .L1_27: KERNEL2x1_SUB(xxx) jl .L1_27 ALIGN_4 .L1_29: vbroadcastss ALPHA_R, %xmm0 vbroadcastss ALPHA_I, %xmm1 // swap high and low 64 bytes vshufps $0xb1, %xmm9 , %xmm9, %xmm9 #if defined(NN) || defined(NT) || defined(TN) || defined(TT) || \ defined(NR) || defined(NC) || defined(TR) || defined(TC) vaddsubps %xmm9, %xmm8 , %xmm8 vshufps $0xb1, %xmm8 , %xmm8, %xmm9 #else vaddsubps %xmm8, %xmm9 ,%xmm9 vmovaps %xmm9, %xmm8 // swap high and low 64 bytes vshufps $0xb1, %xmm9 , %xmm9, %xmm9 #endif // multiply with ALPHA_R vmulps %xmm8 , %xmm0, %xmm8 // multiply with ALPHA_I vmulps %xmm9 , %xmm1, %xmm9 vaddsubps %xmm9, %xmm8 , %xmm8 #ifndef TRMMKERNEL vaddps (CO1), %xmm8 , %xmm8 #endif vmovups %xmm8 , (CO1) #if (defined(TRMMKERNEL) && defined(LEFT) && defined(TRANSA)) || \ (defined(TRMMKERNEL) && !defined(LEFT) && !defined(TRANSA)) movq K, %rax subq KKK, %rax movq %rax, BI // Index for BO leaq ( ,BI,2), BI // BI = BI * 2 ; number of values leaq (BO, BI, SIZE), BO salq $2, %rax // rax = rax * 4 ; number of values leaq (AO, %rax, SIZE), AO #endif #if defined(TRMMKERNEL) && defined(LEFT) addq $2, KK #endif addq $4 * SIZE, CO1 # coffset += 4 ALIGN_4 /**************************************************************************/ .L1_40: testq $1, M jz .L999 // to next 2 lines of N ALIGN_4 .L1_41: #if !defined(TRMMKERNEL) || \ (defined(TRMMKERNEL) && defined(LEFT) && defined(TRANSA)) || \ (defined(TRMMKERNEL) && !defined(LEFT) && !defined(TRANSA)) leaq BUFFER1, BO // first buffer to BO addq $4 * SIZE, BO #else movq KK, %rax leaq BUFFER1, BO // first buffer to BO addq $4 * SIZE, BO movq %rax, BI // Index for BO leaq (,BI,2), BI // BI = BI * 2 ; number of values leaq (BO, BI, SIZE), BO salq $1, %rax // rax = rax * 2 ; number of values leaq (AO, %rax, SIZE), AO #endif vzeroall #ifndef TRMMKERNEL movq K, %rax #elif (defined(LEFT) && !defined(TRANSA)) || (!defined(LEFT) && defined(TRANSA)) movq K, %rax subq KK, %rax movq %rax, KKK #else movq KK, %rax #ifdef LEFT addq $1, %rax // number of values in AO #else addq $1, %rax // number of values in BO #endif movq %rax, KKK #endif andq $-8, %rax // K = K - ( K % 8 ) je .L1_46 movq %rax, BI // Index for BO leaq ( ,BI,2), BI // BI = BI * 2 ; number of values salq $1, %rax // rax = rax * 2 ; number of values leaq (AO, %rax, SIZE), AO leaq (BO, BI, SIZE), BO negq BI negq %rax ALIGN_4 .L1_42: prefetcht0 B_PR1(BO,BI,SIZE) KERNEL1x1_1(xxx) KERNEL1x1_2(xxx) KERNEL1x1_3(xxx) KERNEL1x1_4(xxx) KERNEL1x1_1(xxx) KERNEL1x1_2(xxx) KERNEL1x1_3(xxx) KERNEL1x1_4(xxx) je .L1_46 prefetcht0 B_PR1(BO,BI,SIZE) KERNEL1x1_1(xxx) KERNEL1x1_2(xxx) KERNEL1x1_3(xxx) KERNEL1x1_4(xxx) KERNEL1x1_1(xxx) KERNEL1x1_2(xxx) KERNEL1x1_3(xxx) KERNEL1x1_4(xxx) je .L1_46 jmp .L1_42 ALIGN_4 .L1_46: #ifndef TRMMKERNEL movq K, %rax #else movq KKK, %rax #endif andq $7, %rax # if (k & 1) je .L1_49 movq %rax, BI // Index for BO leaq ( ,BI,2), BI // BI = BI * 2 ; number of values salq $1, %rax // rax = rax * 2 ; number of values leaq (AO, %rax, SIZE), AO leaq (BO, BI, SIZE), BO negq BI negq %rax ALIGN_4 .L1_47: KERNEL1x1_SUB(xxx) jl .L1_47 ALIGN_4 .L1_49: vbroadcastss ALPHA_R, %xmm0 vbroadcastss ALPHA_I, %xmm1 // swap high and low 64 bytes vshufps $0xb1, %xmm9 , %xmm9, %xmm9 #if defined(NN) || defined(NT) || defined(TN) || defined(TT) || \ defined(NR) || defined(NC) || defined(TR) || defined(TC) vaddsubps %xmm9, %xmm8 , %xmm8 vshufps $0xb1, %xmm8 , %xmm8, %xmm9 #else vaddsubps %xmm8, %xmm9 ,%xmm9 vmovaps %xmm9, %xmm8 // swap high and low 64 bytes vshufps $0xb1, %xmm9 , %xmm9, %xmm9 #endif // multiply with ALPHA_R vmulps %xmm8 , %xmm0, %xmm8 // multiply with ALPHA_I vmulps %xmm9 , %xmm1, %xmm9 vaddsubps %xmm9, %xmm8 , %xmm8 #ifndef TRMMKERNEL vmovsd (CO1), %xmm14 vaddps %xmm14, %xmm8 , %xmm8 #endif vmovsd %xmm8 , (CO1) #if (defined(TRMMKERNEL) && defined(LEFT) && defined(TRANSA)) || \ (defined(TRMMKERNEL) && !defined(LEFT) && !defined(TRANSA)) movq K, %rax subq KKK, %rax movq %rax, BI // Index for BO leaq ( ,BI,2), BI // BI = BI * 2 ; number of values leaq (BO, BI, SIZE), BO salq $1, %rax // rax = rax * 2 ; number of values leaq (AO, %rax, SIZE), AO #endif #if defined(TRMMKERNEL) && defined(LEFT) addq $1, KK #endif addq $2 * SIZE, CO1 # coffset += 2 ALIGN_4 .L999: vzeroupper movq SP, %rsp movq (%rsp), %rbx movq 8(%rsp), %rbp movq 16(%rsp), %r12 movq 24(%rsp), %r13 movq 32(%rsp), %r14 movq 40(%rsp), %r15 #ifdef WINDOWS_ABI movq 48(%rsp), %rdi movq 56(%rsp), %rsi vmovups 64(%rsp), %xmm6 vmovups 80(%rsp), %xmm7 vmovups 96(%rsp), %xmm8 vmovups 112(%rsp), %xmm9 vmovups 128(%rsp), %xmm10 vmovups 144(%rsp), %xmm11 vmovups 160(%rsp), %xmm12 vmovups 176(%rsp), %xmm13 vmovups 192(%rsp), %xmm14 vmovups 208(%rsp), %xmm15 #endif addq $STACKSIZE, %rsp ret EPILOGUE