*> \brief \b CTBMV * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE CTBMV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX) * * .. Scalar Arguments .. * INTEGER INCX,K,LDA,N * CHARACTER DIAG,TRANS,UPLO * .. * .. Array Arguments .. * COMPLEX A(LDA,*),X(*) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CTBMV performs one of the matrix-vector operations *> *> x := A*x, or x := A**T*x, or x := A**H*x, *> *> where x is an n element vector and A is an n by n unit, or non-unit, *> upper or lower triangular band matrix, with ( k + 1 ) diagonals. *> \endverbatim * * Arguments: * ========== * *> \param[in] UPLO *> \verbatim *> UPLO is CHARACTER*1 *> On entry, UPLO specifies whether the matrix is an upper or *> lower triangular matrix as follows: *> *> UPLO = 'U' or 'u' A is an upper triangular matrix. *> *> UPLO = 'L' or 'l' A is a lower triangular matrix. *> \endverbatim *> *> \param[in] TRANS *> \verbatim *> TRANS is CHARACTER*1 *> On entry, TRANS specifies the operation to be performed as *> follows: *> *> TRANS = 'N' or 'n' x := A*x. *> *> TRANS = 'T' or 't' x := A**T*x. *> *> TRANS = 'C' or 'c' x := A**H*x. *> \endverbatim *> *> \param[in] DIAG *> \verbatim *> DIAG is CHARACTER*1 *> On entry, DIAG specifies whether or not A is unit *> triangular as follows: *> *> DIAG = 'U' or 'u' A is assumed to be unit triangular. *> *> DIAG = 'N' or 'n' A is not assumed to be unit *> triangular. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> On entry, N specifies the order of the matrix A. *> N must be at least zero. *> \endverbatim *> *> \param[in] K *> \verbatim *> K is INTEGER *> On entry with UPLO = 'U' or 'u', K specifies the number of *> super-diagonals of the matrix A. *> On entry with UPLO = 'L' or 'l', K specifies the number of *> sub-diagonals of the matrix A. *> K must satisfy 0 .le. K. *> \endverbatim *> *> \param[in] A *> \verbatim *> A is COMPLEX array of DIMENSION ( LDA, n ). *> Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) *> by n part of the array A must contain the upper triangular *> band part of the matrix of coefficients, supplied column by *> column, with the leading diagonal of the matrix in row *> ( k + 1 ) of the array, the first super-diagonal starting at *> position 2 in row k, and so on. The top left k by k triangle *> of the array A is not referenced. *> The following program segment will transfer an upper *> triangular band matrix from conventional full matrix storage *> to band storage: *> *> DO 20, J = 1, N *> M = K + 1 - J *> DO 10, I = MAX( 1, J - K ), J *> A( M + I, J ) = matrix( I, J ) *> 10 CONTINUE *> 20 CONTINUE *> *> Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) *> by n part of the array A must contain the lower triangular *> band part of the matrix of coefficients, supplied column by *> column, with the leading diagonal of the matrix in row 1 of *> the array, the first sub-diagonal starting at position 1 in *> row 2, and so on. The bottom right k by k triangle of the *> array A is not referenced. *> The following program segment will transfer a lower *> triangular band matrix from conventional full matrix storage *> to band storage: *> *> DO 20, J = 1, N *> M = 1 - J *> DO 10, I = J, MIN( N, J + K ) *> A( M + I, J ) = matrix( I, J ) *> 10 CONTINUE *> 20 CONTINUE *> *> Note that when DIAG = 'U' or 'u' the elements of the array A *> corresponding to the diagonal elements of the matrix are not *> referenced, but are assumed to be unity. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> On entry, LDA specifies the first dimension of A as declared *> in the calling (sub) program. LDA must be at least *> ( k + 1 ). *> \endverbatim *> *> \param[in,out] X *> \verbatim *> X is COMPLEX array of dimension at least *> ( 1 + ( n - 1 )*abs( INCX ) ). *> Before entry, the incremented array X must contain the n *> element vector x. On exit, X is overwritten with the *> tranformed vector x. *> \endverbatim *> *> \param[in] INCX *> \verbatim *> INCX is INTEGER *> On entry, INCX specifies the increment for the elements of *> X. INCX must not be zero. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date November 2011 * *> \ingroup complex_blas_level2 * *> \par Further Details: * ===================== *> *> \verbatim *> *> Level 2 Blas routine. *> The vector and matrix arguments are not referenced when N = 0, or M = 0 *> *> -- Written on 22-October-1986. *> Jack Dongarra, Argonne National Lab. *> Jeremy Du Croz, Nag Central Office. *> Sven Hammarling, Nag Central Office. *> Richard Hanson, Sandia National Labs. *> \endverbatim *> * ===================================================================== SUBROUTINE CTBMV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX) * * -- Reference BLAS level2 routine (version 3.4.0) -- * -- Reference BLAS is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2011 * * .. Scalar Arguments .. INTEGER INCX,K,LDA,N CHARACTER DIAG,TRANS,UPLO * .. * .. Array Arguments .. COMPLEX A(LDA,*),X(*) * .. * * ===================================================================== * * .. Parameters .. COMPLEX ZERO PARAMETER (ZERO= (0.0E+0,0.0E+0)) * .. * .. Local Scalars .. COMPLEX TEMP INTEGER I,INFO,IX,J,JX,KPLUS1,KX,L LOGICAL NOCONJ,NOUNIT * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC CONJG,MAX,MIN * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. + .NOT.LSAME(TRANS,'C')) THEN INFO = 2 ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN INFO = 3 ELSE IF (N.LT.0) THEN INFO = 4 ELSE IF (K.LT.0) THEN INFO = 5 ELSE IF (LDA.LT. (K+1)) THEN INFO = 7 ELSE IF (INCX.EQ.0) THEN INFO = 9 END IF IF (INFO.NE.0) THEN CALL XERBLA('CTBMV ',INFO) RETURN END IF * * Quick return if possible. * IF (N.EQ.0) RETURN * NOCONJ = LSAME(TRANS,'T') NOUNIT = LSAME(DIAG,'N') * * Set up the start point in X if the increment is not unity. This * will be ( N - 1 )*INCX too small for descending loops. * IF (INCX.LE.0) THEN KX = 1 - (N-1)*INCX ELSE IF (INCX.NE.1) THEN KX = 1 END IF * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through A. * IF (LSAME(TRANS,'N')) THEN * * Form x := A*x. * IF (LSAME(UPLO,'U')) THEN KPLUS1 = K + 1 IF (INCX.EQ.1) THEN DO 20 J = 1,N IF (X(J).NE.ZERO) THEN TEMP = X(J) L = KPLUS1 - J DO 10 I = MAX(1,J-K),J - 1 X(I) = X(I) + TEMP*A(L+I,J) 10 CONTINUE IF (NOUNIT) X(J) = X(J)*A(KPLUS1,J) END IF 20 CONTINUE ELSE JX = KX DO 40 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = X(JX) IX = KX L = KPLUS1 - J DO 30 I = MAX(1,J-K),J - 1 X(IX) = X(IX) + TEMP*A(L+I,J) IX = IX + INCX 30 CONTINUE IF (NOUNIT) X(JX) = X(JX)*A(KPLUS1,J) END IF JX = JX + INCX IF (J.GT.K) KX = KX + INCX 40 CONTINUE END IF ELSE IF (INCX.EQ.1) THEN DO 60 J = N,1,-1 IF (X(J).NE.ZERO) THEN TEMP = X(J) L = 1 - J DO 50 I = MIN(N,J+K),J + 1,-1 X(I) = X(I) + TEMP*A(L+I,J) 50 CONTINUE IF (NOUNIT) X(J) = X(J)*A(1,J) END IF 60 CONTINUE ELSE KX = KX + (N-1)*INCX JX = KX DO 80 J = N,1,-1 IF (X(JX).NE.ZERO) THEN TEMP = X(JX) IX = KX L = 1 - J DO 70 I = MIN(N,J+K),J + 1,-1 X(IX) = X(IX) + TEMP*A(L+I,J) IX = IX - INCX 70 CONTINUE IF (NOUNIT) X(JX) = X(JX)*A(1,J) END IF JX = JX - INCX IF ((N-J).GE.K) KX = KX - INCX 80 CONTINUE END IF END IF ELSE * * Form x := A**T*x or x := A**H*x. * IF (LSAME(UPLO,'U')) THEN KPLUS1 = K + 1 IF (INCX.EQ.1) THEN DO 110 J = N,1,-1 TEMP = X(J) L = KPLUS1 - J IF (NOCONJ) THEN IF (NOUNIT) TEMP = TEMP*A(KPLUS1,J) DO 90 I = J - 1,MAX(1,J-K),-1 TEMP = TEMP + A(L+I,J)*X(I) 90 CONTINUE ELSE IF (NOUNIT) TEMP = TEMP*CONJG(A(KPLUS1,J)) DO 100 I = J - 1,MAX(1,J-K),-1 TEMP = TEMP + CONJG(A(L+I,J))*X(I) 100 CONTINUE END IF X(J) = TEMP 110 CONTINUE ELSE KX = KX + (N-1)*INCX JX = KX DO 140 J = N,1,-1 TEMP = X(JX) KX = KX - INCX IX = KX L = KPLUS1 - J IF (NOCONJ) THEN IF (NOUNIT) TEMP = TEMP*A(KPLUS1,J) DO 120 I = J - 1,MAX(1,J-K),-1 TEMP = TEMP + A(L+I,J)*X(IX) IX = IX - INCX 120 CONTINUE ELSE IF (NOUNIT) TEMP = TEMP*CONJG(A(KPLUS1,J)) DO 130 I = J - 1,MAX(1,J-K),-1 TEMP = TEMP + CONJG(A(L+I,J))*X(IX) IX = IX - INCX 130 CONTINUE END IF X(JX) = TEMP JX = JX - INCX 140 CONTINUE END IF ELSE IF (INCX.EQ.1) THEN DO 170 J = 1,N TEMP = X(J) L = 1 - J IF (NOCONJ) THEN IF (NOUNIT) TEMP = TEMP*A(1,J) DO 150 I = J + 1,MIN(N,J+K) TEMP = TEMP + A(L+I,J)*X(I) 150 CONTINUE ELSE IF (NOUNIT) TEMP = TEMP*CONJG(A(1,J)) DO 160 I = J + 1,MIN(N,J+K) TEMP = TEMP + CONJG(A(L+I,J))*X(I) 160 CONTINUE END IF X(J) = TEMP 170 CONTINUE ELSE JX = KX DO 200 J = 1,N TEMP = X(JX) KX = KX + INCX IX = KX L = 1 - J IF (NOCONJ) THEN IF (NOUNIT) TEMP = TEMP*A(1,J) DO 180 I = J + 1,MIN(N,J+K) TEMP = TEMP + A(L+I,J)*X(IX) IX = IX + INCX 180 CONTINUE ELSE IF (NOUNIT) TEMP = TEMP*CONJG(A(1,J)) DO 190 I = J + 1,MIN(N,J+K) TEMP = TEMP + CONJG(A(L+I,J))*X(IX) IX = IX + INCX 190 CONTINUE END IF X(JX) = TEMP JX = JX + INCX 200 CONTINUE END IF END IF END IF * RETURN * * End of CTBMV . * END