*> \brief \b CPOTRF2 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * RECURSIVE SUBROUTINE CPOTRF2( UPLO, N, A, LDA, INFO ) * * .. Scalar Arguments .. * CHARACTER UPLO * INTEGER INFO, LDA, N * .. * .. Array Arguments .. * COMPLEX A( LDA, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CPOTRF2 computes the Cholesky factorization of a real symmetric *> positive definite matrix A using the recursive algorithm. *> *> The factorization has the form *> A = U**H * U, if UPLO = 'U', or *> A = L * L**H, if UPLO = 'L', *> where U is an upper triangular matrix and L is lower triangular. *> *> This is the recursive version of the algorithm. It divides *> the matrix into four submatrices: *> *> [ A11 | A12 ] where A11 is n1 by n1 and A22 is n2 by n2 *> A = [ -----|----- ] with n1 = n/2 *> [ A21 | A22 ] n2 = n-n1 *> *> The subroutine calls itself to factor A11. Update and scale A21 *> or A12, update A22 then calls itself to factor A22. *> *> \endverbatim * * Arguments: * ========== * *> \param[in] UPLO *> \verbatim *> UPLO is CHARACTER*1 *> = 'U': Upper triangle of A is stored; *> = 'L': Lower triangle of A is stored. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrix A. N >= 0. *> \endverbatim *> *> \param[in,out] A *> \verbatim *> A is DOUBLE PRECISION array, dimension (LDA,N) *> On entry, the symmetric matrix A. If UPLO = 'U', the leading *> N-by-N upper triangular part of A contains the upper *> triangular part of the matrix A, and the strictly lower *> triangular part of A is not referenced. If UPLO = 'L', the *> leading N-by-N lower triangular part of A contains the lower *> triangular part of the matrix A, and the strictly upper *> triangular part of A is not referenced. *> *> On exit, if INFO = 0, the factor U or L from the Cholesky *> factorization A = U**H*U or A = L*L**H. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,N). *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: if INFO = -i, the i-th argument had an illegal value *> > 0: if INFO = i, the leading minor of order i is not *> positive definite, and the factorization could not be *> completed. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date November 2015 * *> \ingroup complexPOcomputational * * ===================================================================== RECURSIVE SUBROUTINE CPOTRF2( UPLO, N, A, LDA, INFO ) * * -- LAPACK computational routine (version 3.6.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2015 * * .. Scalar Arguments .. CHARACTER UPLO INTEGER INFO, LDA, N * .. * .. Array Arguments .. COMPLEX A( LDA, * ) * .. * * ===================================================================== * * .. Parameters .. REAL ONE, ZERO PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) COMPLEX CONE PARAMETER ( CONE = (1.0E+0, 0.0E+0) ) * .. * .. Local Scalars .. LOGICAL UPPER INTEGER N1, N2, IINFO REAL AJJ * .. * .. External Functions .. LOGICAL LSAME, SISNAN EXTERNAL LSAME, SISNAN * .. * .. External Subroutines .. EXTERNAL CHERK, CTRSM, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX, REAL, SQRT * .. * .. Executable Statements .. * * Test the input parameters * INFO = 0 UPPER = LSAME( UPLO, 'U' ) IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -4 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'CPOTRF2', -INFO ) RETURN END IF * * Quick return if possible * IF( N.EQ.0 ) $ RETURN * * N=1 case * IF( N.EQ.1 ) THEN * * Test for non-positive-definiteness * AJJ = REAL( A( 1, 1 ) ) IF( AJJ.LE.ZERO.OR.SISNAN( AJJ ) ) THEN INFO = 1 RETURN END IF * * Factor * A( 1, 1 ) = SQRT( AJJ ) * * Use recursive code * ELSE N1 = N/2 N2 = N-N1 * * Factor A11 * CALL CPOTRF2( UPLO, N1, A( 1, 1 ), LDA, IINFO ) IF ( IINFO.NE.0 ) THEN INFO = IINFO RETURN END IF * * Compute the Cholesky factorization A = U**H*U * IF( UPPER ) THEN * * Update and scale A12 * CALL CTRSM( 'L', 'U', 'C', 'N', N1, N2, CONE, $ A( 1, 1 ), LDA, A( 1, N1+1 ), LDA ) * * Update and factor A22 * CALL CHERK( UPLO, 'C', N2, N1, -ONE, A( 1, N1+1 ), LDA, $ ONE, A( N1+1, N1+1 ), LDA ) * CALL CPOTRF2( UPLO, N2, A( N1+1, N1+1 ), LDA, IINFO ) * IF ( IINFO.NE.0 ) THEN INFO = IINFO + N1 RETURN END IF * * Compute the Cholesky factorization A = L*L**H * ELSE * * Update and scale A21 * CALL CTRSM( 'R', 'L', 'C', 'N', N2, N1, CONE, $ A( 1, 1 ), LDA, A( N1+1, 1 ), LDA ) * * Update and factor A22 * CALL CHERK( UPLO, 'N', N2, N1, -ONE, A( N1+1, 1 ), LDA, $ ONE, A( N1+1, N1+1 ), LDA ) * CALL CPOTRF2( UPLO, N2, A( N1+1, N1+1 ), LDA, IINFO ) * IF ( IINFO.NE.0 ) THEN INFO = IINFO + N1 RETURN END IF * END IF END IF RETURN * * End of CPOTRF2 * END