*> \brief \b ZLASCL multiplies a general rectangular matrix by a real scalar defined as cto/cfrom.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZLASCL + dependencies
*>
*> [TGZ]
*>
*> [ZIP]
*>
*> [TXT]
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE ZLASCL( TYPE, KL, KU, CFROM, CTO, M, N, A, LDA, INFO )
*
* .. Scalar Arguments ..
* CHARACTER TYPE
* INTEGER INFO, KL, KU, LDA, M, N
* DOUBLE PRECISION CFROM, CTO
* ..
* .. Array Arguments ..
* COMPLEX*16 A( LDA, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZLASCL multiplies the M by N complex matrix A by the real scalar
*> CTO/CFROM. This is done without over/underflow as long as the final
*> result CTO*A(I,J)/CFROM does not over/underflow. TYPE specifies that
*> A may be full, upper triangular, lower triangular, upper Hessenberg,
*> or banded.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] TYPE
*> \verbatim
*> TYPE is CHARACTER*1
*> TYPE indices the storage type of the input matrix.
*> = 'G': A is a full matrix.
*> = 'L': A is a lower triangular matrix.
*> = 'U': A is an upper triangular matrix.
*> = 'H': A is an upper Hessenberg matrix.
*> = 'B': A is a symmetric band matrix with lower bandwidth KL
*> and upper bandwidth KU and with the only the lower
*> half stored.
*> = 'Q': A is a symmetric band matrix with lower bandwidth KL
*> and upper bandwidth KU and with the only the upper
*> half stored.
*> = 'Z': A is a band matrix with lower bandwidth KL and upper
*> bandwidth KU. See ZGBTRF for storage details.
*> \endverbatim
*>
*> \param[in] KL
*> \verbatim
*> KL is INTEGER
*> The lower bandwidth of A. Referenced only if TYPE = 'B',
*> 'Q' or 'Z'.
*> \endverbatim
*>
*> \param[in] KU
*> \verbatim
*> KU is INTEGER
*> The upper bandwidth of A. Referenced only if TYPE = 'B',
*> 'Q' or 'Z'.
*> \endverbatim
*>
*> \param[in] CFROM
*> \verbatim
*> CFROM is DOUBLE PRECISION
*> \endverbatim
*>
*> \param[in] CTO
*> \verbatim
*> CTO is DOUBLE PRECISION
*>
*> The matrix A is multiplied by CTO/CFROM. A(I,J) is computed
*> without over/underflow if the final result CTO*A(I,J)/CFROM
*> can be represented without over/underflow. CFROM must be
*> nonzero.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix A. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is COMPLEX*16 array, dimension (LDA,N)
*> The matrix to be multiplied by CTO/CFROM. See TYPE for the
*> storage type.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,M).
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> 0 - successful exit
*> <0 - if INFO = -i, the i-th argument had an illegal value.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date September 2012
*
*> \ingroup complex16OTHERauxiliary
*
* =====================================================================
SUBROUTINE ZLASCL( TYPE, KL, KU, CFROM, CTO, M, N, A, LDA, INFO )
*
* -- LAPACK auxiliary routine (version 3.4.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* September 2012
*
* .. Scalar Arguments ..
CHARACTER TYPE
INTEGER INFO, KL, KU, LDA, M, N
DOUBLE PRECISION CFROM, CTO
* ..
* .. Array Arguments ..
COMPLEX*16 A( LDA, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
* ..
* .. Local Scalars ..
LOGICAL DONE
INTEGER I, ITYPE, J, K1, K2, K3, K4
DOUBLE PRECISION BIGNUM, CFROM1, CFROMC, CTO1, CTOC, MUL, SMLNUM
* ..
* .. External Functions ..
LOGICAL LSAME, DISNAN
DOUBLE PRECISION DLAMCH
EXTERNAL LSAME, DLAMCH, DISNAN
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Executable Statements ..
*
* Test the input arguments
*
INFO = 0
*
IF( LSAME( TYPE, 'G' ) ) THEN
ITYPE = 0
ELSE IF( LSAME( TYPE, 'L' ) ) THEN
ITYPE = 1
ELSE IF( LSAME( TYPE, 'U' ) ) THEN
ITYPE = 2
ELSE IF( LSAME( TYPE, 'H' ) ) THEN
ITYPE = 3
ELSE IF( LSAME( TYPE, 'B' ) ) THEN
ITYPE = 4
ELSE IF( LSAME( TYPE, 'Q' ) ) THEN
ITYPE = 5
ELSE IF( LSAME( TYPE, 'Z' ) ) THEN
ITYPE = 6
ELSE
ITYPE = -1
END IF
*
IF( ITYPE.EQ.-1 ) THEN
INFO = -1
ELSE IF( CFROM.EQ.ZERO .OR. DISNAN(CFROM) ) THEN
INFO = -4
ELSE IF( DISNAN(CTO) ) THEN
INFO = -5
ELSE IF( M.LT.0 ) THEN
INFO = -6
ELSE IF( N.LT.0 .OR. ( ITYPE.EQ.4 .AND. N.NE.M ) .OR.
$ ( ITYPE.EQ.5 .AND. N.NE.M ) ) THEN
INFO = -7
ELSE IF( ITYPE.LE.3 .AND. LDA.LT.MAX( 1, M ) ) THEN
INFO = -9
ELSE IF( ITYPE.GE.4 ) THEN
IF( KL.LT.0 .OR. KL.GT.MAX( M-1, 0 ) ) THEN
INFO = -2
ELSE IF( KU.LT.0 .OR. KU.GT.MAX( N-1, 0 ) .OR.
$ ( ( ITYPE.EQ.4 .OR. ITYPE.EQ.5 ) .AND. KL.NE.KU ) )
$ THEN
INFO = -3
ELSE IF( ( ITYPE.EQ.4 .AND. LDA.LT.KL+1 ) .OR.
$ ( ITYPE.EQ.5 .AND. LDA.LT.KU+1 ) .OR.
$ ( ITYPE.EQ.6 .AND. LDA.LT.2*KL+KU+1 ) ) THEN
INFO = -9
END IF
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZLASCL', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 .OR. M.EQ.0 )
$ RETURN
*
* Get machine parameters
*
SMLNUM = DLAMCH( 'S' )
BIGNUM = ONE / SMLNUM
*
CFROMC = CFROM
CTOC = CTO
*
10 CONTINUE
CFROM1 = CFROMC*SMLNUM
IF( CFROM1.EQ.CFROMC ) THEN
! CFROMC is an inf. Multiply by a correctly signed zero for
! finite CTOC, or a NaN if CTOC is infinite.
MUL = CTOC / CFROMC
DONE = .TRUE.
CTO1 = CTOC
ELSE
CTO1 = CTOC / BIGNUM
IF( CTO1.EQ.CTOC ) THEN
! CTOC is either 0 or an inf. In both cases, CTOC itself
! serves as the correct multiplication factor.
MUL = CTOC
DONE = .TRUE.
CFROMC = ONE
ELSE IF( ABS( CFROM1 ).GT.ABS( CTOC ) .AND. CTOC.NE.ZERO ) THEN
MUL = SMLNUM
DONE = .FALSE.
CFROMC = CFROM1
ELSE IF( ABS( CTO1 ).GT.ABS( CFROMC ) ) THEN
MUL = BIGNUM
DONE = .FALSE.
CTOC = CTO1
ELSE
MUL = CTOC / CFROMC
DONE = .TRUE.
END IF
END IF
*
IF( ITYPE.EQ.0 ) THEN
*
* Full matrix
*
DO 30 J = 1, N
DO 20 I = 1, M
A( I, J ) = A( I, J )*MUL
20 CONTINUE
30 CONTINUE
*
ELSE IF( ITYPE.EQ.1 ) THEN
*
* Lower triangular matrix
*
DO 50 J = 1, N
DO 40 I = J, M
A( I, J ) = A( I, J )*MUL
40 CONTINUE
50 CONTINUE
*
ELSE IF( ITYPE.EQ.2 ) THEN
*
* Upper triangular matrix
*
DO 70 J = 1, N
DO 60 I = 1, MIN( J, M )
A( I, J ) = A( I, J )*MUL
60 CONTINUE
70 CONTINUE
*
ELSE IF( ITYPE.EQ.3 ) THEN
*
* Upper Hessenberg matrix
*
DO 90 J = 1, N
DO 80 I = 1, MIN( J+1, M )
A( I, J ) = A( I, J )*MUL
80 CONTINUE
90 CONTINUE
*
ELSE IF( ITYPE.EQ.4 ) THEN
*
* Lower half of a symmetric band matrix
*
K3 = KL + 1
K4 = N + 1
DO 110 J = 1, N
DO 100 I = 1, MIN( K3, K4-J )
A( I, J ) = A( I, J )*MUL
100 CONTINUE
110 CONTINUE
*
ELSE IF( ITYPE.EQ.5 ) THEN
*
* Upper half of a symmetric band matrix
*
K1 = KU + 2
K3 = KU + 1
DO 130 J = 1, N
DO 120 I = MAX( K1-J, 1 ), K3
A( I, J ) = A( I, J )*MUL
120 CONTINUE
130 CONTINUE
*
ELSE IF( ITYPE.EQ.6 ) THEN
*
* Band matrix
*
K1 = KL + KU + 2
K2 = KL + 1
K3 = 2*KL + KU + 1
K4 = KL + KU + 1 + M
DO 150 J = 1, N
DO 140 I = MAX( K1-J, K2 ), MIN( K3, K4-J )
A( I, J ) = A( I, J )*MUL
140 CONTINUE
150 CONTINUE
*
END IF
*
IF( .NOT.DONE )
$ GO TO 10
*
RETURN
*
* End of ZLASCL
*
END