*> \brief \b ALAHDG * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE ALAHDG( IOUNIT, PATH ) * * .. Scalar Arguments .. * CHARACTER*3 PATH * INTEGER IOUNIT * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ALAHDG prints header information for the different test paths. *> \endverbatim * * Arguments: * ========== * *> \param[in] IOUNIT *> \verbatim *> IOUNIT is INTEGER *> The unit number to which the header information should be *> printed. *> \endverbatim *> *> \param[in] PATH *> \verbatim *> PATH is CHARACTER*3 *> The name of the path for which the header information is to *> be printed. Current paths are *> GQR: GQR (general matrices) *> GRQ: GRQ (general matrices) *> LSE: LSE Problem *> GLM: GLM Problem *> GSV: Generalized Singular Value Decomposition *> CSD: CS Decomposition *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date November 2011 * *> \ingroup aux_eig * * ===================================================================== SUBROUTINE ALAHDG( IOUNIT, PATH ) * * -- LAPACK test routine (version 3.4.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2011 * * .. Scalar Arguments .. CHARACTER*3 PATH INTEGER IOUNIT * .. * * ===================================================================== * * .. Local Scalars .. CHARACTER*3 C2 INTEGER ITYPE * .. * .. External Functions .. LOGICAL LSAMEN EXTERNAL LSAMEN * .. * .. Executable Statements .. * IF( IOUNIT.LE.0 ) $ RETURN C2 = PATH( 1: 3 ) * * First line describing matrices in this path * IF( LSAMEN( 3, C2, 'GQR' ) ) THEN ITYPE = 1 WRITE( IOUNIT, FMT = 9991 )PATH ELSE IF( LSAMEN( 3, C2, 'GRQ' ) ) THEN ITYPE = 2 WRITE( IOUNIT, FMT = 9992 )PATH ELSE IF( LSAMEN( 3, C2, 'LSE' ) ) THEN ITYPE = 3 WRITE( IOUNIT, FMT = 9993 )PATH ELSE IF( LSAMEN( 3, C2, 'GLM' ) ) THEN ITYPE = 4 WRITE( IOUNIT, FMT = 9994 )PATH ELSE IF( LSAMEN( 3, C2, 'GSV' ) ) THEN ITYPE = 5 WRITE( IOUNIT, FMT = 9995 )PATH ELSE IF( LSAMEN( 3, C2, 'CSD' ) ) THEN ITYPE = 6 WRITE( IOUNIT, FMT = 9996 )PATH END IF * * Matrix types * WRITE( IOUNIT, FMT = 9999 )'Matrix types: ' * IF( ITYPE.EQ.1 )THEN WRITE( IOUNIT, FMT = 9950 )1 WRITE( IOUNIT, FMT = 9952 )2 WRITE( IOUNIT, FMT = 9954 )3 WRITE( IOUNIT, FMT = 9955 )4 WRITE( IOUNIT, FMT = 9956 )5 WRITE( IOUNIT, FMT = 9957 )6 WRITE( IOUNIT, FMT = 9961 )7 WRITE( IOUNIT, FMT = 9962 )8 ELSE IF( ITYPE.EQ.2 )THEN WRITE( IOUNIT, FMT = 9951 )1 WRITE( IOUNIT, FMT = 9953 )2 WRITE( IOUNIT, FMT = 9954 )3 WRITE( IOUNIT, FMT = 9955 )4 WRITE( IOUNIT, FMT = 9956 )5 WRITE( IOUNIT, FMT = 9957 )6 WRITE( IOUNIT, FMT = 9961 )7 WRITE( IOUNIT, FMT = 9962 )8 ELSE IF( ITYPE.EQ.3 )THEN WRITE( IOUNIT, FMT = 9950 )1 WRITE( IOUNIT, FMT = 9952 )2 WRITE( IOUNIT, FMT = 9954 )3 WRITE( IOUNIT, FMT = 9955 )4 WRITE( IOUNIT, FMT = 9955 )5 WRITE( IOUNIT, FMT = 9955 )6 WRITE( IOUNIT, FMT = 9955 )7 WRITE( IOUNIT, FMT = 9955 )8 ELSE IF( ITYPE.EQ.4 )THEN WRITE( IOUNIT, FMT = 9951 )1 WRITE( IOUNIT, FMT = 9953 )2 WRITE( IOUNIT, FMT = 9954 )3 WRITE( IOUNIT, FMT = 9955 )4 WRITE( IOUNIT, FMT = 9955 )5 WRITE( IOUNIT, FMT = 9955 )6 WRITE( IOUNIT, FMT = 9955 )7 WRITE( IOUNIT, FMT = 9955 )8 ELSE IF( ITYPE.EQ.5 )THEN WRITE( IOUNIT, FMT = 9950 )1 WRITE( IOUNIT, FMT = 9952 )2 WRITE( IOUNIT, FMT = 9954 )3 WRITE( IOUNIT, FMT = 9955 )4 WRITE( IOUNIT, FMT = 9956 )5 WRITE( IOUNIT, FMT = 9957 )6 WRITE( IOUNIT, FMT = 9959 )7 WRITE( IOUNIT, FMT = 9960 )8 ELSE IF( ITYPE.EQ.6 )THEN WRITE( IOUNIT, FMT = 9963 )1 WRITE( IOUNIT, FMT = 9964 )2 WRITE( IOUNIT, FMT = 9965 )3 END IF * * Tests performed * WRITE( IOUNIT, FMT = 9999 )'Test ratios: ' * IF( ITYPE.EQ.1 ) THEN * * GQR decomposition of rectangular matrices * WRITE( IOUNIT, FMT = 9930 )1 WRITE( IOUNIT, FMT = 9931 )2 WRITE( IOUNIT, FMT = 9932 )3 WRITE( IOUNIT, FMT = 9933 )4 ELSE IF( ITYPE.EQ.2 ) THEN * * GRQ decomposition of rectangular matrices * WRITE( IOUNIT, FMT = 9934 )1 WRITE( IOUNIT, FMT = 9935 )2 WRITE( IOUNIT, FMT = 9932 )3 WRITE( IOUNIT, FMT = 9933 )4 ELSE IF( ITYPE.EQ.3 ) THEN * * LSE Problem * WRITE( IOUNIT, FMT = 9937 )1 WRITE( IOUNIT, FMT = 9938 )2 ELSE IF( ITYPE.EQ.4 ) THEN * * GLM Problem * WRITE( IOUNIT, FMT = 9939 )1 ELSE IF( ITYPE.EQ.5 ) THEN * * GSVD * WRITE( IOUNIT, FMT = 9940 )1 WRITE( IOUNIT, FMT = 9941 )2 WRITE( IOUNIT, FMT = 9942 )3 WRITE( IOUNIT, FMT = 9943 )4 WRITE( IOUNIT, FMT = 9944 )5 ELSE IF( ITYPE.EQ.6 ) THEN * * CSD * WRITE( IOUNIT, FMT = 9910 ) WRITE( IOUNIT, FMT = 9911 )1 WRITE( IOUNIT, FMT = 9912 )2 WRITE( IOUNIT, FMT = 9913 )3 WRITE( IOUNIT, FMT = 9914 )4 WRITE( IOUNIT, FMT = 9915 )5 WRITE( IOUNIT, FMT = 9916 )6 WRITE( IOUNIT, FMT = 9917 )7 WRITE( IOUNIT, FMT = 9918 )8 WRITE( IOUNIT, FMT = 9919 )9 WRITE( IOUNIT, FMT = 9920 ) WRITE( IOUNIT, FMT = 9921 )10 WRITE( IOUNIT, FMT = 9922 )11 WRITE( IOUNIT, FMT = 9923 )12 WRITE( IOUNIT, FMT = 9924 )13 WRITE( IOUNIT, FMT = 9925 )14 WRITE( IOUNIT, FMT = 9926 )15 END IF * 9999 FORMAT( 1X, A ) 9991 FORMAT( / 1X, A3, ': GQR factorization of general matrices' ) 9992 FORMAT( / 1X, A3, ': GRQ factorization of general matrices' ) 9993 FORMAT( / 1X, A3, ': LSE Problem' ) 9994 FORMAT( / 1X, A3, ': GLM Problem' ) 9995 FORMAT( / 1X, A3, ': Generalized Singular Value Decomposition' ) 9996 FORMAT( / 1X, A3, ': CS Decomposition' ) * 9950 FORMAT( 3X, I2, ': A-diagonal matrix B-upper triangular' ) 9951 FORMAT( 3X, I2, ': A-diagonal matrix B-lower triangular' ) 9952 FORMAT( 3X, I2, ': A-upper triangular B-upper triangular' ) 9953 FORMAT( 3X, I2, ': A-lower triangular B-diagonal triangular' ) 9954 FORMAT( 3X, I2, ': A-lower triangular B-upper triangular' ) * 9955 FORMAT( 3X, I2, ': Random matrices cond(A)=100, cond(B)=10,' ) * 9956 FORMAT( 3X, I2, ': Random matrices cond(A)= sqrt( 0.1/EPS ) ', $ 'cond(B)= sqrt( 0.1/EPS )' ) 9957 FORMAT( 3X, I2, ': Random matrices cond(A)= 0.1/EPS ', $ 'cond(B)= 0.1/EPS' ) 9959 FORMAT( 3X, I2, ': Random matrices cond(A)= sqrt( 0.1/EPS ) ', $ 'cond(B)= 0.1/EPS ' ) 9960 FORMAT( 3X, I2, ': Random matrices cond(A)= 0.1/EPS ', $ 'cond(B)= sqrt( 0.1/EPS )' ) * 9961 FORMAT( 3X, I2, ': Matrix scaled near underflow limit' ) 9962 FORMAT( 3X, I2, ': Matrix scaled near overflow limit' ) 9963 FORMAT( 3X, I2, ': Random orthogonal matrix (Haar measure)' ) 9964 FORMAT( 3X, I2, ': Nearly orthogonal matrix with uniformly ', $ 'distributed angles atan2( S, C ) in CS decomposition' ) 9965 FORMAT( 3X, I2, ': Random orthogonal matrix with clustered ', $ 'angles atan2( S, C ) in CS decomposition' ) * * * GQR test ratio * 9930 FORMAT( 3X, I2, ': norm( R - Q'' * A ) / ( min( N, M )*norm( A )', $ '* EPS )' ) 9931 FORMAT( 3X, I2, ': norm( T * Z - Q'' * B ) / ( min(P,N)*norm(B)', $ '* EPS )' ) 9932 FORMAT( 3X, I2, ': norm( I - Q''*Q ) / ( N * EPS )' ) 9933 FORMAT( 3X, I2, ': norm( I - Z''*Z ) / ( P * EPS )' ) * * GRQ test ratio * 9934 FORMAT( 3X, I2, ': norm( R - A * Q'' ) / ( min( N,M )*norm(A) * ', $ 'EPS )' ) 9935 FORMAT( 3X, I2, ': norm( T * Q - Z'' * B ) / ( min( P,N ) * nor', $ 'm(B)*EPS )' ) * * LSE test ratio * 9937 FORMAT( 3X, I2, ': norm( A*x - c ) / ( norm(A)*norm(x) * EPS )' ) 9938 FORMAT( 3X, I2, ': norm( B*x - d ) / ( norm(B)*norm(x) * EPS )' ) * * GLM test ratio * 9939 FORMAT( 3X, I2, ': norm( d - A*x - B*y ) / ( (norm(A)+norm(B) )*', $ '(norm(x)+norm(y))*EPS )' ) * * GSVD test ratio * 9940 FORMAT( 3X, I2, ': norm( U'' * A * Q - D1 * R ) / ( min( M, N )*', $ 'norm( A ) * EPS )' ) 9941 FORMAT( 3X, I2, ': norm( V'' * B * Q - D2 * R ) / ( min( P, N )*', $ 'norm( B ) * EPS )' ) 9942 FORMAT( 3X, I2, ': norm( I - U''*U ) / ( M * EPS )' ) 9943 FORMAT( 3X, I2, ': norm( I - V''*V ) / ( P * EPS )' ) 9944 FORMAT( 3X, I2, ': norm( I - Q''*Q ) / ( N * EPS )' ) * * CSD test ratio * 9910 FORMAT( 3X, '2-by-2 CSD' ) 9911 FORMAT( 3X, I2, ': norm( U1'' * X11 * V1 - C ) / ( max( P, Q)', $ ' * max(norm(I-X''*X),EPS) )' ) 9912 FORMAT( 3X, I2, ': norm( U1'' * X12 * V2-(-S)) / ( max( P,', $ 'M-Q) * max(norm(I-X''*X),EPS) )' ) 9913 FORMAT( 3X, I2, ': norm( U2'' * X21 * V1 - S ) / ( max(M-P,', $ ' Q) * max(norm(I-X''*X),EPS) )' ) 9914 FORMAT( 3X, I2, ': norm( U2'' * X22 * V2 - C ) / ( max(M-P,', $ 'M-Q) * max(norm(I-X''*X),EPS) )' ) 9915 FORMAT( 3X, I2, ': norm( I - U1''*U1 ) / ( P * EPS )' ) 9916 FORMAT( 3X, I2, ': norm( I - U2''*U2 ) / ( (M-P) * EPS )' ) 9917 FORMAT( 3X, I2, ': norm( I - V1''*V1 ) / ( Q * EPS )' ) 9918 FORMAT( 3X, I2, ': norm( I - V2''*V2 ) / ( (M-Q) * EPS )' ) 9919 FORMAT( 3X, I2, ': principal angle ordering ( 0 or ULP )' ) 9920 FORMAT( 3X, '2-by-1 CSD' ) 9921 FORMAT( 3X, I2, ': norm( U1'' * X11 * V1 - C ) / ( max( P, Q)', $ ' * max(norm(I-X''*X),EPS) )' ) 9922 FORMAT( 3X, I2, ': norm( U2'' * X21 * V1 - S ) / ( max( M-P,', $ 'Q) * max(norm(I-X''*X),EPS) )' ) 9923 FORMAT( 3X, I2, ': norm( I - U1''*U1 ) / ( P * EPS )' ) 9924 FORMAT( 3X, I2, ': norm( I - U2''*U2 ) / ( (M-P) * EPS )' ) 9925 FORMAT( 3X, I2, ': norm( I - V1''*V1 ) / ( Q * EPS )' ) 9926 FORMAT( 3X, I2, ': principal angle ordering ( 0 or ULP )' ) RETURN * * End of ALAHDG * END