*> \brief \b CLATM4 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE CLATM4( ITYPE, N, NZ1, NZ2, RSIGN, AMAGN, RCOND, * TRIANG, IDIST, ISEED, A, LDA ) * * .. Scalar Arguments .. * LOGICAL RSIGN * INTEGER IDIST, ITYPE, LDA, N, NZ1, NZ2 * REAL AMAGN, RCOND, TRIANG * .. * .. Array Arguments .. * INTEGER ISEED( 4 ) * COMPLEX A( LDA, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CLATM4 generates basic square matrices, which may later be *> multiplied by others in order to produce test matrices. It is *> intended mainly to be used to test the generalized eigenvalue *> routines. *> *> It first generates the diagonal and (possibly) subdiagonal, *> according to the value of ITYPE, NZ1, NZ2, RSIGN, AMAGN, and RCOND. *> It then fills in the upper triangle with random numbers, if TRIANG is *> non-zero. *> \endverbatim * * Arguments: * ========== * *> \param[in] ITYPE *> \verbatim *> ITYPE is INTEGER *> The "type" of matrix on the diagonal and sub-diagonal. *> If ITYPE < 0, then type abs(ITYPE) is generated and then *> swapped end for end (A(I,J) := A'(N-J,N-I).) See also *> the description of AMAGN and RSIGN. *> *> Special types: *> = 0: the zero matrix. *> = 1: the identity. *> = 2: a transposed Jordan block. *> = 3: If N is odd, then a k+1 x k+1 transposed Jordan block *> followed by a k x k identity block, where k=(N-1)/2. *> If N is even, then k=(N-2)/2, and a zero diagonal entry *> is tacked onto the end. *> *> Diagonal types. The diagonal consists of NZ1 zeros, then *> k=N-NZ1-NZ2 nonzeros. The subdiagonal is zero. ITYPE *> specifies the nonzero diagonal entries as follows: *> = 4: 1, ..., k *> = 5: 1, RCOND, ..., RCOND *> = 6: 1, ..., 1, RCOND *> = 7: 1, a, a^2, ..., a^(k-1)=RCOND *> = 8: 1, 1-d, 1-2*d, ..., 1-(k-1)*d=RCOND *> = 9: random numbers chosen from (RCOND,1) *> = 10: random numbers with distribution IDIST (see CLARND.) *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrix. *> \endverbatim *> *> \param[in] NZ1 *> \verbatim *> NZ1 is INTEGER *> If abs(ITYPE) > 3, then the first NZ1 diagonal entries will *> be zero. *> \endverbatim *> *> \param[in] NZ2 *> \verbatim *> NZ2 is INTEGER *> If abs(ITYPE) > 3, then the last NZ2 diagonal entries will *> be zero. *> \endverbatim *> *> \param[in] RSIGN *> \verbatim *> RSIGN is LOGICAL *> = .TRUE.: The diagonal and subdiagonal entries will be *> multiplied by random numbers of magnitude 1. *> = .FALSE.: The diagonal and subdiagonal entries will be *> left as they are (usually non-negative real.) *> \endverbatim *> *> \param[in] AMAGN *> \verbatim *> AMAGN is REAL *> The diagonal and subdiagonal entries will be multiplied by *> AMAGN. *> \endverbatim *> *> \param[in] RCOND *> \verbatim *> RCOND is REAL *> If abs(ITYPE) > 4, then the smallest diagonal entry will be *> RCOND. RCOND must be between 0 and 1. *> \endverbatim *> *> \param[in] TRIANG *> \verbatim *> TRIANG is REAL *> The entries above the diagonal will be random numbers with *> magnitude bounded by TRIANG (i.e., random numbers multiplied *> by TRIANG.) *> \endverbatim *> *> \param[in] IDIST *> \verbatim *> IDIST is INTEGER *> On entry, DIST specifies the type of distribution to be used *> to generate a random matrix . *> = 1: real and imaginary parts each UNIFORM( 0, 1 ) *> = 2: real and imaginary parts each UNIFORM( -1, 1 ) *> = 3: real and imaginary parts each NORMAL( 0, 1 ) *> = 4: complex number uniform in DISK( 0, 1 ) *> \endverbatim *> *> \param[in,out] ISEED *> \verbatim *> ISEED is INTEGER array, dimension (4) *> On entry ISEED specifies the seed of the random number *> generator. The values of ISEED are changed on exit, and can *> be used in the next call to CLATM4 to continue the same *> random number sequence. *> Note: ISEED(4) should be odd, for the random number generator *> used at present. *> \endverbatim *> *> \param[out] A *> \verbatim *> A is COMPLEX array, dimension (LDA, N) *> Array to be computed. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> Leading dimension of A. Must be at least 1 and at least N. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date November 2011 * *> \ingroup complex_eig * * ===================================================================== SUBROUTINE CLATM4( ITYPE, N, NZ1, NZ2, RSIGN, AMAGN, RCOND, $ TRIANG, IDIST, ISEED, A, LDA ) * * -- LAPACK test routine (version 3.4.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2011 * * .. Scalar Arguments .. LOGICAL RSIGN INTEGER IDIST, ITYPE, LDA, N, NZ1, NZ2 REAL AMAGN, RCOND, TRIANG * .. * .. Array Arguments .. INTEGER ISEED( 4 ) COMPLEX A( LDA, * ) * .. * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) COMPLEX CZERO, CONE PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ), $ CONE = ( 1.0E+0, 0.0E+0 ) ) * .. * .. Local Scalars .. INTEGER I, ISDB, ISDE, JC, JD, JR, K, KBEG, KEND, KLEN REAL ALPHA COMPLEX CTEMP * .. * .. External Functions .. REAL SLARAN COMPLEX CLARND EXTERNAL SLARAN, CLARND * .. * .. External Subroutines .. EXTERNAL CLASET * .. * .. Intrinsic Functions .. INTRINSIC ABS, CMPLX, EXP, LOG, MAX, MIN, MOD, REAL * .. * .. Executable Statements .. * IF( N.LE.0 ) $ RETURN CALL CLASET( 'Full', N, N, CZERO, CZERO, A, LDA ) * * Insure a correct ISEED * IF( MOD( ISEED( 4 ), 2 ).NE.1 ) $ ISEED( 4 ) = ISEED( 4 ) + 1 * * Compute diagonal and subdiagonal according to ITYPE, NZ1, NZ2, * and RCOND * IF( ITYPE.NE.0 ) THEN IF( ABS( ITYPE ).GE.4 ) THEN KBEG = MAX( 1, MIN( N, NZ1+1 ) ) KEND = MAX( KBEG, MIN( N, N-NZ2 ) ) KLEN = KEND + 1 - KBEG ELSE KBEG = 1 KEND = N KLEN = N END IF ISDB = 1 ISDE = 0 GO TO ( 10, 30, 50, 80, 100, 120, 140, 160, $ 180, 200 )ABS( ITYPE ) * * abs(ITYPE) = 1: Identity * 10 CONTINUE DO 20 JD = 1, N A( JD, JD ) = CONE 20 CONTINUE GO TO 220 * * abs(ITYPE) = 2: Transposed Jordan block * 30 CONTINUE DO 40 JD = 1, N - 1 A( JD+1, JD ) = CONE 40 CONTINUE ISDB = 1 ISDE = N - 1 GO TO 220 * * abs(ITYPE) = 3: Transposed Jordan block, followed by the * identity. * 50 CONTINUE K = ( N-1 ) / 2 DO 60 JD = 1, K A( JD+1, JD ) = CONE 60 CONTINUE ISDB = 1 ISDE = K DO 70 JD = K + 2, 2*K + 1 A( JD, JD ) = CONE 70 CONTINUE GO TO 220 * * abs(ITYPE) = 4: 1,...,k * 80 CONTINUE DO 90 JD = KBEG, KEND A( JD, JD ) = CMPLX( JD-NZ1 ) 90 CONTINUE GO TO 220 * * abs(ITYPE) = 5: One large D value: * 100 CONTINUE DO 110 JD = KBEG + 1, KEND A( JD, JD ) = CMPLX( RCOND ) 110 CONTINUE A( KBEG, KBEG ) = CONE GO TO 220 * * abs(ITYPE) = 6: One small D value: * 120 CONTINUE DO 130 JD = KBEG, KEND - 1 A( JD, JD ) = CONE 130 CONTINUE A( KEND, KEND ) = CMPLX( RCOND ) GO TO 220 * * abs(ITYPE) = 7: Exponentially distributed D values: * 140 CONTINUE A( KBEG, KBEG ) = CONE IF( KLEN.GT.1 ) THEN ALPHA = RCOND**( ONE / REAL( KLEN-1 ) ) DO 150 I = 2, KLEN A( NZ1+I, NZ1+I ) = CMPLX( ALPHA**REAL( I-1 ) ) 150 CONTINUE END IF GO TO 220 * * abs(ITYPE) = 8: Arithmetically distributed D values: * 160 CONTINUE A( KBEG, KBEG ) = CONE IF( KLEN.GT.1 ) THEN ALPHA = ( ONE-RCOND ) / REAL( KLEN-1 ) DO 170 I = 2, KLEN A( NZ1+I, NZ1+I ) = CMPLX( REAL( KLEN-I )*ALPHA+RCOND ) 170 CONTINUE END IF GO TO 220 * * abs(ITYPE) = 9: Randomly distributed D values on ( RCOND, 1): * 180 CONTINUE ALPHA = LOG( RCOND ) DO 190 JD = KBEG, KEND A( JD, JD ) = EXP( ALPHA*SLARAN( ISEED ) ) 190 CONTINUE GO TO 220 * * abs(ITYPE) = 10: Randomly distributed D values from DIST * 200 CONTINUE DO 210 JD = KBEG, KEND A( JD, JD ) = CLARND( IDIST, ISEED ) 210 CONTINUE * 220 CONTINUE * * Scale by AMAGN * DO 230 JD = KBEG, KEND A( JD, JD ) = AMAGN*REAL( A( JD, JD ) ) 230 CONTINUE DO 240 JD = ISDB, ISDE A( JD+1, JD ) = AMAGN*REAL( A( JD+1, JD ) ) 240 CONTINUE * * If RSIGN = .TRUE., assign random signs to diagonal and * subdiagonal * IF( RSIGN ) THEN DO 250 JD = KBEG, KEND IF( REAL( A( JD, JD ) ).NE.ZERO ) THEN CTEMP = CLARND( 3, ISEED ) CTEMP = CTEMP / ABS( CTEMP ) A( JD, JD ) = CTEMP*REAL( A( JD, JD ) ) END IF 250 CONTINUE DO 260 JD = ISDB, ISDE IF( REAL( A( JD+1, JD ) ).NE.ZERO ) THEN CTEMP = CLARND( 3, ISEED ) CTEMP = CTEMP / ABS( CTEMP ) A( JD+1, JD ) = CTEMP*REAL( A( JD+1, JD ) ) END IF 260 CONTINUE END IF * * Reverse if ITYPE < 0 * IF( ITYPE.LT.0 ) THEN DO 270 JD = KBEG, ( KBEG+KEND-1 ) / 2 CTEMP = A( JD, JD ) A( JD, JD ) = A( KBEG+KEND-JD, KBEG+KEND-JD ) A( KBEG+KEND-JD, KBEG+KEND-JD ) = CTEMP 270 CONTINUE DO 280 JD = 1, ( N-1 ) / 2 CTEMP = A( JD+1, JD ) A( JD+1, JD ) = A( N+1-JD, N-JD ) A( N+1-JD, N-JD ) = CTEMP 280 CONTINUE END IF * END IF * * Fill in upper triangle * IF( TRIANG.NE.ZERO ) THEN DO 300 JC = 2, N DO 290 JR = 1, JC - 1 A( JR, JC ) = TRIANG*CLARND( IDIST, ISEED ) 290 CONTINUE 300 CONTINUE END IF * RETURN * * End of CLATM4 * END