*> \brief \b DCKCSD * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE DCKCSD( NM, MVAL, PVAL, QVAL, NMATS, ISEED, THRESH, * MMAX, X, XF, U1, U2, V1T, V2T, THETA, IWORK, * WORK, RWORK, NIN, NOUT, INFO ) * * .. Scalar Arguments .. * INTEGER INFO, NIN, NM, NMATS, MMAX, NOUT * DOUBLE PRECISION THRESH * .. * .. Array Arguments .. * INTEGER ISEED( 4 ), IWORK( * ), MVAL( * ), PVAL( * ), * $ QVAL( * ) * DOUBLE PRECISION RWORK( * ), THETA( * ) * DOUBLE PRECISION U1( * ), U2( * ), V1T( * ), V2T( * ), * $ WORK( * ), X( * ), XF( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> DCKCSD tests DORCSD: *> the CSD for an M-by-M orthogonal matrix X partitioned as *> [ X11 X12; X21 X22 ]. X11 is P-by-Q. *> \endverbatim * * Arguments: * ========== * *> \param[in] NM *> \verbatim *> NM is INTEGER *> The number of values of M contained in the vector MVAL. *> \endverbatim *> *> \param[in] MVAL *> \verbatim *> MVAL is INTEGER array, dimension (NM) *> The values of the matrix row dimension M. *> \endverbatim *> *> \param[in] PVAL *> \verbatim *> PVAL is INTEGER array, dimension (NM) *> The values of the matrix row dimension P. *> \endverbatim *> *> \param[in] QVAL *> \verbatim *> QVAL is INTEGER array, dimension (NM) *> The values of the matrix column dimension Q. *> \endverbatim *> *> \param[in] NMATS *> \verbatim *> NMATS is INTEGER *> The number of matrix types to be tested for each combination *> of matrix dimensions. If NMATS >= NTYPES (the maximum *> number of matrix types), then all the different types are *> generated for testing. If NMATS < NTYPES, another input line *> is read to get the numbers of the matrix types to be used. *> \endverbatim *> *> \param[in,out] ISEED *> \verbatim *> ISEED is INTEGER array, dimension (4) *> On entry, the seed of the random number generator. The array *> elements should be between 0 and 4095, otherwise they will be *> reduced mod 4096, and ISEED(4) must be odd. *> On exit, the next seed in the random number sequence after *> all the test matrices have been generated. *> \endverbatim *> *> \param[in] THRESH *> \verbatim *> THRESH is DOUBLE PRECISION *> The threshold value for the test ratios. A result is *> included in the output file if RESULT >= THRESH. To have *> every test ratio printed, use THRESH = 0. *> \endverbatim *> *> \param[in] MMAX *> \verbatim *> MMAX is INTEGER *> The maximum value permitted for M, used in dimensioning the *> work arrays. *> \endverbatim *> *> \param[out] X *> \verbatim *> X is DOUBLE PRECISION array, dimension (MMAX*MMAX) *> \endverbatim *> *> \param[out] XF *> \verbatim *> XF is DOUBLE PRECISION array, dimension (MMAX*MMAX) *> \endverbatim *> *> \param[out] U1 *> \verbatim *> U1 is DOUBLE PRECISION array, dimension (MMAX*MMAX) *> \endverbatim *> *> \param[out] U2 *> \verbatim *> U2 is DOUBLE PRECISION array, dimension (MMAX*MMAX) *> \endverbatim *> *> \param[out] V1T *> \verbatim *> V1T is DOUBLE PRECISION array, dimension (MMAX*MMAX) *> \endverbatim *> *> \param[out] V2T *> \verbatim *> V2T is DOUBLE PRECISION array, dimension (MMAX*MMAX) *> \endverbatim *> *> \param[out] THETA *> \verbatim *> THETA is DOUBLE PRECISION array, dimension (MMAX) *> \endverbatim *> *> \param[out] IWORK *> \verbatim *> IWORK is INTEGER array, dimension (MMAX) *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is DOUBLE PRECISION array *> \endverbatim *> *> \param[out] RWORK *> \verbatim *> RWORK is DOUBLE PRECISION array *> \endverbatim *> *> \param[in] NIN *> \verbatim *> NIN is INTEGER *> The unit number for input. *> \endverbatim *> *> \param[in] NOUT *> \verbatim *> NOUT is INTEGER *> The unit number for output. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0 : successful exit *> > 0 : If DLAROR returns an error code, the absolute value *> of it is returned. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date November 2011 * *> \ingroup double_eig * * ===================================================================== SUBROUTINE DCKCSD( NM, MVAL, PVAL, QVAL, NMATS, ISEED, THRESH, $ MMAX, X, XF, U1, U2, V1T, V2T, THETA, IWORK, $ WORK, RWORK, NIN, NOUT, INFO ) * * -- LAPACK test routine (version 3.4.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2011 * * .. Scalar Arguments .. INTEGER INFO, NIN, NM, NMATS, MMAX, NOUT DOUBLE PRECISION THRESH * .. * .. Array Arguments .. INTEGER ISEED( 4 ), IWORK( * ), MVAL( * ), PVAL( * ), $ QVAL( * ) DOUBLE PRECISION RWORK( * ), THETA( * ) DOUBLE PRECISION U1( * ), U2( * ), V1T( * ), V2T( * ), $ WORK( * ), X( * ), XF( * ) * .. * * ===================================================================== * * .. Parameters .. INTEGER NTESTS PARAMETER ( NTESTS = 15 ) INTEGER NTYPES PARAMETER ( NTYPES = 4 ) DOUBLE PRECISION GAPDIGIT, ONE, ORTH, PIOVER2, TEN, ZERO PARAMETER ( GAPDIGIT = 18.0D0, ONE = 1.0D0, $ ORTH = 1.0D-12, $ PIOVER2 = 1.57079632679489662D0, $ TEN = 10.0D0, ZERO = 0.0D0 ) * .. * .. Local Scalars .. LOGICAL FIRSTT CHARACTER*3 PATH INTEGER I, IINFO, IM, IMAT, J, LDU1, LDU2, LDV1T, $ LDV2T, LDX, LWORK, M, NFAIL, NRUN, NT, P, Q, R * .. * .. Local Arrays .. LOGICAL DOTYPE( NTYPES ) DOUBLE PRECISION RESULT( NTESTS ) * .. * .. External Subroutines .. EXTERNAL ALAHDG, ALAREQ, ALASUM, DCSDTS, DLACSG, DLAROR, $ DLASET * .. * .. Intrinsic Functions .. INTRINSIC ABS, MIN * .. * .. External Functions .. DOUBLE PRECISION DLARAN, DLARND EXTERNAL DLARAN, DLARND * .. * .. Executable Statements .. * * Initialize constants and the random number seed. * PATH( 1: 3 ) = 'CSD' INFO = 0 NRUN = 0 NFAIL = 0 FIRSTT = .TRUE. CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT ) LDX = MMAX LDU1 = MMAX LDU2 = MMAX LDV1T = MMAX LDV2T = MMAX LWORK = MMAX*MMAX * * Do for each value of M in MVAL. * DO 30 IM = 1, NM M = MVAL( IM ) P = PVAL( IM ) Q = QVAL( IM ) * DO 20 IMAT = 1, NTYPES * * Do the tests only if DOTYPE( IMAT ) is true. * IF( .NOT.DOTYPE( IMAT ) ) $ GO TO 20 * * Generate X * IF( IMAT.EQ.1 ) THEN CALL DLAROR( 'L', 'I', M, M, X, LDX, ISEED, WORK, IINFO ) IF( M .NE. 0 .AND. IINFO .NE. 0 ) THEN WRITE( NOUT, FMT = 9999 ) M, IINFO INFO = ABS( IINFO ) GO TO 20 END IF ELSE IF( IMAT.EQ.2 ) THEN R = MIN( P, M-P, Q, M-Q ) DO I = 1, R THETA(I) = PIOVER2 * DLARND( 1, ISEED ) END DO CALL DLACSG( M, P, Q, THETA, ISEED, X, LDX, WORK ) DO I = 1, M DO J = 1, M X(I+(J-1)*LDX) = X(I+(J-1)*LDX) + $ ORTH*DLARND(2,ISEED) END DO END DO ELSE IF( IMAT.EQ.3 ) THEN R = MIN( P, M-P, Q, M-Q ) DO I = 1, R+1 THETA(I) = TEN**(-DLARND(1,ISEED)*GAPDIGIT) END DO DO I = 2, R+1 THETA(I) = THETA(I-1) + THETA(I) END DO DO I = 1, R THETA(I) = PIOVER2 * THETA(I) / THETA(R+1) END DO CALL DLACSG( M, P, Q, THETA, ISEED, X, LDX, WORK ) ELSE CALL DLASET( 'F', M, M, ZERO, ONE, X, LDX ) DO I = 1, M J = INT( DLARAN( ISEED ) * M ) + 1 IF( J .NE. I ) THEN CALL DROT( M, X(1+(I-1)*LDX), 1, X(1+(J-1)*LDX), 1, $ ZERO, ONE ) END IF END DO END IF * NT = 15 * CALL DCSDTS( M, P, Q, X, XF, LDX, U1, LDU1, U2, LDU2, V1T, $ LDV1T, V2T, LDV2T, THETA, IWORK, WORK, LWORK, $ RWORK, RESULT ) * * Print information about the tests that did not * pass the threshold. * DO 10 I = 1, NT IF( RESULT( I ).GE.THRESH ) THEN IF( NFAIL.EQ.0 .AND. FIRSTT ) THEN FIRSTT = .FALSE. CALL ALAHDG( NOUT, PATH ) END IF WRITE( NOUT, FMT = 9998 )M, P, Q, IMAT, I, $ RESULT( I ) NFAIL = NFAIL + 1 END IF 10 CONTINUE NRUN = NRUN + NT 20 CONTINUE 30 CONTINUE * * Print a summary of the results. * CALL ALASUM( PATH, NOUT, NFAIL, NRUN, 0 ) * 9999 FORMAT( ' DLAROR in DCKCSD: M = ', I5, ', INFO = ', I15 ) 9998 FORMAT( ' M=', I4, ' P=', I4, ', Q=', I4, ', type ', I2, $ ', test ', I2, ', ratio=', G13.6 ) RETURN * * End of DCKCSD * END * * * SUBROUTINE DLACSG( M, P, Q, THETA, ISEED, X, LDX, WORK ) IMPLICIT NONE * INTEGER LDX, M, P, Q INTEGER ISEED( 4 ) DOUBLE PRECISION THETA( * ) DOUBLE PRECISION WORK( * ), X( LDX, * ) * DOUBLE PRECISION ONE, ZERO PARAMETER ( ONE = 1.0D0, ZERO = 0.0D0 ) * INTEGER I, INFO, R * R = MIN( P, M-P, Q, M-Q ) * CALL DLASET( 'Full', M, M, ZERO, ZERO, X, LDX ) * DO I = 1, MIN(P,Q)-R X(I,I) = ONE END DO DO I = 1, R X(MIN(P,Q)-R+I,MIN(P,Q)-R+I) = COS(THETA(I)) END DO DO I = 1, MIN(P,M-Q)-R X(P-I+1,M-I+1) = -ONE END DO DO I = 1, R X(P-(MIN(P,M-Q)-R)+1-I,M-(MIN(P,M-Q)-R)+1-I) = $ -SIN(THETA(R-I+1)) END DO DO I = 1, MIN(M-P,Q)-R X(M-I+1,Q-I+1) = ONE END DO DO I = 1, R X(M-(MIN(M-P,Q)-R)+1-I,Q-(MIN(M-P,Q)-R)+1-I) = $ SIN(THETA(R-I+1)) END DO DO I = 1, MIN(M-P,M-Q)-R X(P+I,Q+I) = ONE END DO DO I = 1, R X(P+(MIN(M-P,M-Q)-R)+I,Q+(MIN(M-P,M-Q)-R)+I) = $ COS(THETA(I)) END DO CALL DLAROR( 'Left', 'No init', P, M, X, LDX, ISEED, WORK, INFO ) CALL DLAROR( 'Left', 'No init', M-P, M, X(P+1,1), LDX, $ ISEED, WORK, INFO ) CALL DLAROR( 'Right', 'No init', M, Q, X, LDX, ISEED, $ WORK, INFO ) CALL DLAROR( 'Right', 'No init', M, M-Q, $ X(1,Q+1), LDX, ISEED, WORK, INFO ) * END