*> \brief \b ZCHKEE * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * PROGRAM ZCHKEE * * *> \par Purpose: * ============= *> *> \verbatim *> *> ZCHKEE tests the COMPLEX*16 LAPACK subroutines for the matrix *> eigenvalue problem. The test paths in this version are *> *> NEP (Nonsymmetric Eigenvalue Problem): *> Test ZGEHRD, ZUNGHR, ZHSEQR, ZTREVC, ZHSEIN, and ZUNMHR *> *> SEP (Hermitian Eigenvalue Problem): *> Test ZHETRD, ZUNGTR, ZSTEQR, ZSTERF, ZSTEIN, ZSTEDC, *> and drivers ZHEEV(X), ZHBEV(X), ZHPEV(X), *> ZHEEVD, ZHBEVD, ZHPEVD *> *> SVD (Singular Value Decomposition): *> Test ZGEBRD, ZUNGBR, and ZBDSQR *> and the drivers ZGESVD, ZGESDD *> *> ZEV (Nonsymmetric Eigenvalue/eigenvector Driver): *> Test ZGEEV *> *> ZES (Nonsymmetric Schur form Driver): *> Test ZGEES *> *> ZVX (Nonsymmetric Eigenvalue/eigenvector Expert Driver): *> Test ZGEEVX *> *> ZSX (Nonsymmetric Schur form Expert Driver): *> Test ZGEESX *> *> ZGG (Generalized Nonsymmetric Eigenvalue Problem): *> Test ZGGHD3, ZGGBAL, ZGGBAK, ZHGEQZ, and ZTGEVC *> *> ZGS (Generalized Nonsymmetric Schur form Driver): *> Test ZGGES *> *> ZGV (Generalized Nonsymmetric Eigenvalue/eigenvector Driver): *> Test ZGGEV *> *> ZGX (Generalized Nonsymmetric Schur form Expert Driver): *> Test ZGGESX *> *> ZXV (Generalized Nonsymmetric Eigenvalue/eigenvector Expert Driver): *> Test ZGGEVX *> *> ZSG (Hermitian Generalized Eigenvalue Problem): *> Test ZHEGST, ZHEGV, ZHEGVD, ZHEGVX, ZHPGST, ZHPGV, ZHPGVD, *> ZHPGVX, ZHBGST, ZHBGV, ZHBGVD, and ZHBGVX *> *> ZHB (Hermitian Band Eigenvalue Problem): *> Test ZHBTRD *> *> ZBB (Band Singular Value Decomposition): *> Test ZGBBRD *> *> ZEC (Eigencondition estimation): *> Test ZTRSYL, ZTREXC, ZTRSNA, and ZTRSEN *> *> ZBL (Balancing a general matrix) *> Test ZGEBAL *> *> ZBK (Back transformation on a balanced matrix) *> Test ZGEBAK *> *> ZGL (Balancing a matrix pair) *> Test ZGGBAL *> *> ZGK (Back transformation on a matrix pair) *> Test ZGGBAK *> *> GLM (Generalized Linear Regression Model): *> Tests ZGGGLM *> *> GQR (Generalized QR and RQ factorizations): *> Tests ZGGQRF and ZGGRQF *> *> GSV (Generalized Singular Value Decomposition): *> Tests ZGGSVD, ZGGSVP, ZTGSJA, ZLAGS2, ZLAPLL, and ZLAPMT *> *> CSD (CS decomposition): *> Tests ZUNCSD *> *> LSE (Constrained Linear Least Squares): *> Tests ZGGLSE *> *> Each test path has a different set of inputs, but the data sets for *> the driver routines xEV, xES, xVX, and xSX can be concatenated in a *> single input file. The first line of input should contain one of the *> 3-character path names in columns 1-3. The number of remaining lines *> depends on what is found on the first line. *> *> The number of matrix types used in testing is often controllable from *> the input file. The number of matrix types for each path, and the *> test routine that describes them, is as follows: *> *> Path name(s) Types Test routine *> *> ZHS or NEP 21 ZCHKHS *> ZST or SEP 21 ZCHKST (routines) *> 18 ZDRVST (drivers) *> ZBD or SVD 16 ZCHKBD (routines) *> 5 ZDRVBD (drivers) *> ZEV 21 ZDRVEV *> ZES 21 ZDRVES *> ZVX 21 ZDRVVX *> ZSX 21 ZDRVSX *> ZGG 26 ZCHKGG (routines) *> ZGS 26 ZDRGES *> ZGX 5 ZDRGSX *> ZGV 26 ZDRGEV *> ZXV 2 ZDRGVX *> ZSG 21 ZDRVSG *> ZHB 15 ZCHKHB *> ZBB 15 ZCHKBB *> ZEC - ZCHKEC *> ZBL - ZCHKBL *> ZBK - ZCHKBK *> ZGL - ZCHKGL *> ZGK - ZCHKGK *> GLM 8 ZCKGLM *> GQR 8 ZCKGQR *> GSV 8 ZCKGSV *> CSD 3 ZCKCSD *> LSE 8 ZCKLSE *> *>----------------------------------------------------------------------- *> *> NEP input file: *> *> line 2: NN, INTEGER *> Number of values of N. *> *> line 3: NVAL, INTEGER array, dimension (NN) *> The values for the matrix dimension N. *> *> line 4: NPARMS, INTEGER *> Number of values of the parameters NB, NBMIN, NX, NS, and *> MAXB. *> *> line 5: NBVAL, INTEGER array, dimension (NPARMS) *> The values for the blocksize NB. *> *> line 6: NBMIN, INTEGER array, dimension (NPARMS) *> The values for the minimum blocksize NBMIN. *> *> line 7: NXVAL, INTEGER array, dimension (NPARMS) *> The values for the crossover point NX. *> *> line 8: INMIN, INTEGER array, dimension (NPARMS) *> LAHQR vs TTQRE crossover point, >= 11 *> *> line 9: INWIN, INTEGER array, dimension (NPARMS) *> recommended deflation window size *> *> line 10: INIBL, INTEGER array, dimension (NPARMS) *> nibble crossover point *> *> line 11: ISHFTS, INTEGER array, dimension (NPARMS) *> number of simultaneous shifts) *> *> line 12: IACC22, INTEGER array, dimension (NPARMS) *> select structured matrix multiply: 0, 1 or 2) *> *> line 13: THRESH *> Threshold value for the test ratios. Information will be *> printed about each test for which the test ratio is greater *> than or equal to the threshold. To have all of the test *> ratios printed, use THRESH = 0.0 . *> *> line 14: NEWSD, INTEGER *> A code indicating how to set the random number seed. *> = 0: Set the seed to a default value before each run *> = 1: Initialize the seed to a default value only before the *> first run *> = 2: Like 1, but use the seed values on the next line *> *> If line 14 was 2: *> *> line 15: INTEGER array, dimension (4) *> Four integer values for the random number seed. *> *> lines 15-EOF: The remaining lines occur in sets of 1 or 2 and allow *> the user to specify the matrix types. Each line contains *> a 3-character path name in columns 1-3, and the number *> of matrix types must be the first nonblank item in columns *> 4-80. If the number of matrix types is at least 1 but is *> less than the maximum number of possible types, a second *> line will be read to get the numbers of the matrix types to *> be used. For example, *> NEP 21 *> requests all of the matrix types for the nonsymmetric *> eigenvalue problem, while *> NEP 4 *> 9 10 11 12 *> requests only matrices of type 9, 10, 11, and 12. *> *> The valid 3-character path names are 'NEP' or 'ZHS' for the *> nonsymmetric eigenvalue routines. *> *>----------------------------------------------------------------------- *> *> SEP or ZSG input file: *> *> line 2: NN, INTEGER *> Number of values of N. *> *> line 3: NVAL, INTEGER array, dimension (NN) *> The values for the matrix dimension N. *> *> line 4: NPARMS, INTEGER *> Number of values of the parameters NB, NBMIN, and NX. *> *> line 5: NBVAL, INTEGER array, dimension (NPARMS) *> The values for the blocksize NB. *> *> line 6: NBMIN, INTEGER array, dimension (NPARMS) *> The values for the minimum blocksize NBMIN. *> *> line 7: NXVAL, INTEGER array, dimension (NPARMS) *> The values for the crossover point NX. *> *> line 8: THRESH *> Threshold value for the test ratios. Information will be *> printed about each test for which the test ratio is greater *> than or equal to the threshold. *> *> line 9: TSTCHK, LOGICAL *> Flag indicating whether or not to test the LAPACK routines. *> *> line 10: TSTDRV, LOGICAL *> Flag indicating whether or not to test the driver routines. *> *> line 11: TSTERR, LOGICAL *> Flag indicating whether or not to test the error exits for *> the LAPACK routines and driver routines. *> *> line 12: NEWSD, INTEGER *> A code indicating how to set the random number seed. *> = 0: Set the seed to a default value before each run *> = 1: Initialize the seed to a default value only before the *> first run *> = 2: Like 1, but use the seed values on the next line *> *> If line 12 was 2: *> *> line 13: INTEGER array, dimension (4) *> Four integer values for the random number seed. *> *> lines 13-EOF: Lines specifying matrix types, as for NEP. *> The valid 3-character path names are 'SEP' or 'ZST' for the *> Hermitian eigenvalue routines and driver routines, and *> 'ZSG' for the routines for the Hermitian generalized *> eigenvalue problem. *> *>----------------------------------------------------------------------- *> *> SVD input file: *> *> line 2: NN, INTEGER *> Number of values of M and N. *> *> line 3: MVAL, INTEGER array, dimension (NN) *> The values for the matrix row dimension M. *> *> line 4: NVAL, INTEGER array, dimension (NN) *> The values for the matrix column dimension N. *> *> line 5: NPARMS, INTEGER *> Number of values of the parameter NB, NBMIN, NX, and NRHS. *> *> line 6: NBVAL, INTEGER array, dimension (NPARMS) *> The values for the blocksize NB. *> *> line 7: NBMIN, INTEGER array, dimension (NPARMS) *> The values for the minimum blocksize NBMIN. *> *> line 8: NXVAL, INTEGER array, dimension (NPARMS) *> The values for the crossover point NX. *> *> line 9: NSVAL, INTEGER array, dimension (NPARMS) *> The values for the number of right hand sides NRHS. *> *> line 10: THRESH *> Threshold value for the test ratios. Information will be *> printed about each test for which the test ratio is greater *> than or equal to the threshold. *> *> line 11: TSTCHK, LOGICAL *> Flag indicating whether or not to test the LAPACK routines. *> *> line 12: TSTDRV, LOGICAL *> Flag indicating whether or not to test the driver routines. *> *> line 13: TSTERR, LOGICAL *> Flag indicating whether or not to test the error exits for *> the LAPACK routines and driver routines. *> *> line 14: NEWSD, INTEGER *> A code indicating how to set the random number seed. *> = 0: Set the seed to a default value before each run *> = 1: Initialize the seed to a default value only before the *> first run *> = 2: Like 1, but use the seed values on the next line *> *> If line 14 was 2: *> *> line 15: INTEGER array, dimension (4) *> Four integer values for the random number seed. *> *> lines 15-EOF: Lines specifying matrix types, as for NEP. *> The 3-character path names are 'SVD' or 'ZBD' for both the *> SVD routines and the SVD driver routines. *> *>----------------------------------------------------------------------- *> *> ZEV and ZES data files: *> *> line 1: 'ZEV' or 'ZES' in columns 1 to 3. *> *> line 2: NSIZES, INTEGER *> Number of sizes of matrices to use. Should be at least 0 *> and at most 20. If NSIZES = 0, no testing is done *> (although the remaining 3 lines are still read). *> *> line 3: NN, INTEGER array, dimension(NSIZES) *> Dimensions of matrices to be tested. *> *> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs *> These integer parameters determine how blocking is done *> (see ILAENV for details) *> NB : block size *> NBMIN : minimum block size *> NX : minimum dimension for blocking *> NS : number of shifts in xHSEQR *> NBCOL : minimum column dimension for blocking *> *> line 5: THRESH, REAL *> The test threshold against which computed residuals are *> compared. Should generally be in the range from 10. to 20. *> If it is 0., all test case data will be printed. *> *> line 6: NEWSD, INTEGER *> A code indicating how to set the random number seed. *> = 0: Set the seed to a default value before each run *> = 1: Initialize the seed to a default value only before the *> first run *> = 2: Like 1, but use the seed values on the next line *> *> If line 6 was 2: *> *> line 7: INTEGER array, dimension (4) *> Four integer values for the random number seed. *> *> lines 8 and following: Lines specifying matrix types, as for NEP. *> The 3-character path name is 'ZEV' to test CGEEV, or *> 'ZES' to test CGEES. *> *>----------------------------------------------------------------------- *> *> The ZVX data has two parts. The first part is identical to ZEV, *> and the second part consists of test matrices with precomputed *> solutions. *> *> line 1: 'ZVX' in columns 1-3. *> *> line 2: NSIZES, INTEGER *> If NSIZES = 0, no testing of randomly generated examples *> is done, but any precomputed examples are tested. *> *> line 3: NN, INTEGER array, dimension(NSIZES) *> *> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs *> *> line 5: THRESH, REAL *> *> line 6: NEWSD, INTEGER *> *> If line 6 was 2: *> *> line 7: INTEGER array, dimension (4) *> *> lines 8 and following: The first line contains 'ZVX' in columns 1-3 *> followed by the number of matrix types, possibly with *> a second line to specify certain matrix types. *> If the number of matrix types = 0, no testing of randomly *> generated examples is done, but any precomputed examples *> are tested. *> *> remaining lines : Each matrix is stored on 1+N+N**2 lines, where N is *> its dimension. The first line contains the dimension N and *> ISRT (two integers). ISRT indicates whether the last N lines *> are sorted by increasing real part of the eigenvalue *> (ISRT=0) or by increasing imaginary part (ISRT=1). The next *> N**2 lines contain the matrix rowwise, one entry per line. *> The last N lines correspond to each eigenvalue. Each of *> these last N lines contains 4 real values: the real part of *> the eigenvalues, the imaginary part of the eigenvalue, the *> reciprocal condition number of the eigenvalues, and the *> reciprocal condition number of the vector eigenvector. The *> end of data is indicated by dimension N=0. Even if no data *> is to be tested, there must be at least one line containing *> N=0. *> *>----------------------------------------------------------------------- *> *> The ZSX data is like ZVX. The first part is identical to ZEV, and the *> second part consists of test matrices with precomputed solutions. *> *> line 1: 'ZSX' in columns 1-3. *> *> line 2: NSIZES, INTEGER *> If NSIZES = 0, no testing of randomly generated examples *> is done, but any precomputed examples are tested. *> *> line 3: NN, INTEGER array, dimension(NSIZES) *> *> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs *> *> line 5: THRESH, REAL *> *> line 6: NEWSD, INTEGER *> *> If line 6 was 2: *> *> line 7: INTEGER array, dimension (4) *> *> lines 8 and following: The first line contains 'ZSX' in columns 1-3 *> followed by the number of matrix types, possibly with *> a second line to specify certain matrix types. *> If the number of matrix types = 0, no testing of randomly *> generated examples is done, but any precomputed examples *> are tested. *> *> remaining lines : Each matrix is stored on 3+N**2 lines, where N is *> its dimension. The first line contains the dimension N, the *> dimension M of an invariant subspace, and ISRT. The second *> line contains M integers, identifying the eigenvalues in the *> invariant subspace (by their position in a list of *> eigenvalues ordered by increasing real part (if ISRT=0) or *> by increasing imaginary part (if ISRT=1)). The next N**2 *> lines contain the matrix rowwise. The last line contains the *> reciprocal condition number for the average of the selected *> eigenvalues, and the reciprocal condition number for the *> corresponding right invariant subspace. The end of data in *> indicated by a line containing N=0, M=0, and ISRT = 0. Even *> if no data is to be tested, there must be at least one line *> containing N=0, M=0 and ISRT=0. *> *>----------------------------------------------------------------------- *> *> ZGG input file: *> *> line 2: NN, INTEGER *> Number of values of N. *> *> line 3: NVAL, INTEGER array, dimension (NN) *> The values for the matrix dimension N. *> *> line 4: NPARMS, INTEGER *> Number of values of the parameters NB, NBMIN, NBCOL, NS, and *> MAXB. *> *> line 5: NBVAL, INTEGER array, dimension (NPARMS) *> The values for the blocksize NB. *> *> line 6: NBMIN, INTEGER array, dimension (NPARMS) *> The values for NBMIN, the minimum row dimension for blocks. *> *> line 7: NSVAL, INTEGER array, dimension (NPARMS) *> The values for the number of shifts. *> *> line 8: MXBVAL, INTEGER array, dimension (NPARMS) *> The values for MAXB, used in determining minimum blocksize. *> *> line 9: IACC22, INTEGER array, dimension (NPARMS) *> select structured matrix multiply: 1 or 2) *> *> line 10: NBCOL, INTEGER array, dimension (NPARMS) *> The values for NBCOL, the minimum column dimension for *> blocks. *> *> line 11: THRESH *> Threshold value for the test ratios. Information will be *> printed about each test for which the test ratio is greater *> than or equal to the threshold. *> *> line 12: TSTCHK, LOGICAL *> Flag indicating whether or not to test the LAPACK routines. *> *> line 13: TSTDRV, LOGICAL *> Flag indicating whether or not to test the driver routines. *> *> line 14: TSTERR, LOGICAL *> Flag indicating whether or not to test the error exits for *> the LAPACK routines and driver routines. *> *> line 15: NEWSD, INTEGER *> A code indicating how to set the random number seed. *> = 0: Set the seed to a default value before each run *> = 1: Initialize the seed to a default value only before the *> first run *> = 2: Like 1, but use the seed values on the next line *> *> If line 15 was 2: *> *> line 16: INTEGER array, dimension (4) *> Four integer values for the random number seed. *> *> lines 17-EOF: Lines specifying matrix types, as for NEP. *> The 3-character path name is 'ZGG' for the generalized *> eigenvalue problem routines and driver routines. *> *>----------------------------------------------------------------------- *> *> ZGS and ZGV input files: *> *> line 1: 'ZGS' or 'ZGV' in columns 1 to 3. *> *> line 2: NN, INTEGER *> Number of values of N. *> *> line 3: NVAL, INTEGER array, dimension(NN) *> Dimensions of matrices to be tested. *> *> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs *> These integer parameters determine how blocking is done *> (see ILAENV for details) *> NB : block size *> NBMIN : minimum block size *> NX : minimum dimension for blocking *> NS : number of shifts in xHGEQR *> NBCOL : minimum column dimension for blocking *> *> line 5: THRESH, REAL *> The test threshold against which computed residuals are *> compared. Should generally be in the range from 10. to 20. *> If it is 0., all test case data will be printed. *> *> line 6: TSTERR, LOGICAL *> Flag indicating whether or not to test the error exits. *> *> line 7: NEWSD, INTEGER *> A code indicating how to set the random number seed. *> = 0: Set the seed to a default value before each run *> = 1: Initialize the seed to a default value only before the *> first run *> = 2: Like 1, but use the seed values on the next line *> *> If line 17 was 2: *> *> line 7: INTEGER array, dimension (4) *> Four integer values for the random number seed. *> *> lines 7-EOF: Lines specifying matrix types, as for NEP. *> The 3-character path name is 'ZGS' for the generalized *> eigenvalue problem routines and driver routines. *> *>----------------------------------------------------------------------- *> *> ZGX input file: *> line 1: 'ZGX' in columns 1 to 3. *> *> line 2: N, INTEGER *> Value of N. *> *> line 3: NB, NBMIN, NX, NS, NBCOL, INTEGERs *> These integer parameters determine how blocking is done *> (see ILAENV for details) *> NB : block size *> NBMIN : minimum block size *> NX : minimum dimension for blocking *> NS : number of shifts in xHGEQR *> NBCOL : minimum column dimension for blocking *> *> line 4: THRESH, REAL *> The test threshold against which computed residuals are *> compared. Should generally be in the range from 10. to 20. *> Information will be printed about each test for which the *> test ratio is greater than or equal to the threshold. *> *> line 5: TSTERR, LOGICAL *> Flag indicating whether or not to test the error exits for *> the LAPACK routines and driver routines. *> *> line 6: NEWSD, INTEGER *> A code indicating how to set the random number seed. *> = 0: Set the seed to a default value before each run *> = 1: Initialize the seed to a default value only before the *> first run *> = 2: Like 1, but use the seed values on the next line *> *> If line 6 was 2: *> *> line 7: INTEGER array, dimension (4) *> Four integer values for the random number seed. *> *> If line 2 was 0: *> *> line 7-EOF: Precomputed examples are tested. *> *> remaining lines : Each example is stored on 3+2*N*N lines, where N is *> its dimension. The first line contains the dimension (a *> single integer). The next line contains an integer k such *> that only the last k eigenvalues will be selected and appear *> in the leading diagonal blocks of $A$ and $B$. The next N*N *> lines contain the matrix A, one element per line. The next N*N *> lines contain the matrix B. The last line contains the *> reciprocal of the eigenvalue cluster condition number and the *> reciprocal of the deflating subspace (associated with the *> selected eigencluster) condition number. The end of data is *> indicated by dimension N=0. Even if no data is to be tested, *> there must be at least one line containing N=0. *> *>----------------------------------------------------------------------- *> *> ZXV input files: *> line 1: 'ZXV' in columns 1 to 3. *> *> line 2: N, INTEGER *> Value of N. *> *> line 3: NB, NBMIN, NX, NS, NBCOL, INTEGERs *> These integer parameters determine how blocking is done *> (see ILAENV for details) *> NB : block size *> NBMIN : minimum block size *> NX : minimum dimension for blocking *> NS : number of shifts in xHGEQR *> NBCOL : minimum column dimension for blocking *> *> line 4: THRESH, REAL *> The test threshold against which computed residuals are *> compared. Should generally be in the range from 10. to 20. *> Information will be printed about each test for which the *> test ratio is greater than or equal to the threshold. *> *> line 5: TSTERR, LOGICAL *> Flag indicating whether or not to test the error exits for *> the LAPACK routines and driver routines. *> *> line 6: NEWSD, INTEGER *> A code indicating how to set the random number seed. *> = 0: Set the seed to a default value before each run *> = 1: Initialize the seed to a default value only before the *> first run *> = 2: Like 1, but use the seed values on the next line *> *> If line 6 was 2: *> *> line 7: INTEGER array, dimension (4) *> Four integer values for the random number seed. *> *> If line 2 was 0: *> *> line 7-EOF: Precomputed examples are tested. *> *> remaining lines : Each example is stored on 3+2*N*N lines, where N is *> its dimension. The first line contains the dimension (a *> single integer). The next N*N lines contain the matrix A, one *> element per line. The next N*N lines contain the matrix B. *> The next line contains the reciprocals of the eigenvalue *> condition numbers. The last line contains the reciprocals of *> the eigenvector condition numbers. The end of data is *> indicated by dimension N=0. Even if no data is to be tested, *> there must be at least one line containing N=0. *> *>----------------------------------------------------------------------- *> *> ZHB input file: *> *> line 2: NN, INTEGER *> Number of values of N. *> *> line 3: NVAL, INTEGER array, dimension (NN) *> The values for the matrix dimension N. *> *> line 4: NK, INTEGER *> Number of values of K. *> *> line 5: KVAL, INTEGER array, dimension (NK) *> The values for the matrix dimension K. *> *> line 6: THRESH *> Threshold value for the test ratios. Information will be *> printed about each test for which the test ratio is greater *> than or equal to the threshold. *> *> line 7: NEWSD, INTEGER *> A code indicating how to set the random number seed. *> = 0: Set the seed to a default value before each run *> = 1: Initialize the seed to a default value only before the *> first run *> = 2: Like 1, but use the seed values on the next line *> *> If line 7 was 2: *> *> line 8: INTEGER array, dimension (4) *> Four integer values for the random number seed. *> *> lines 8-EOF: Lines specifying matrix types, as for NEP. *> The 3-character path name is 'ZHB'. *> *>----------------------------------------------------------------------- *> *> ZBB input file: *> *> line 2: NN, INTEGER *> Number of values of M and N. *> *> line 3: MVAL, INTEGER array, dimension (NN) *> The values for the matrix row dimension M. *> *> line 4: NVAL, INTEGER array, dimension (NN) *> The values for the matrix column dimension N. *> *> line 4: NK, INTEGER *> Number of values of K. *> *> line 5: KVAL, INTEGER array, dimension (NK) *> The values for the matrix bandwidth K. *> *> line 6: NPARMS, INTEGER *> Number of values of the parameter NRHS *> *> line 7: NSVAL, INTEGER array, dimension (NPARMS) *> The values for the number of right hand sides NRHS. *> *> line 8: THRESH *> Threshold value for the test ratios. Information will be *> printed about each test for which the test ratio is greater *> than or equal to the threshold. *> *> line 9: NEWSD, INTEGER *> A code indicating how to set the random number seed. *> = 0: Set the seed to a default value before each run *> = 1: Initialize the seed to a default value only before the *> first run *> = 2: Like 1, but use the seed values on the next line *> *> If line 9 was 2: *> *> line 10: INTEGER array, dimension (4) *> Four integer values for the random number seed. *> *> lines 10-EOF: Lines specifying matrix types, as for SVD. *> The 3-character path name is 'ZBB'. *> *>----------------------------------------------------------------------- *> *> ZEC input file: *> *> line 2: THRESH, REAL *> Threshold value for the test ratios. Information will be *> printed about each test for which the test ratio is greater *> than or equal to the threshold. *> *> lines 3-EOF: *> *> Input for testing the eigencondition routines consists of a set of *> specially constructed test cases and their solutions. The data *> format is not intended to be modified by the user. *> *>----------------------------------------------------------------------- *> *> ZBL and ZBK input files: *> *> line 1: 'ZBL' in columns 1-3 to test CGEBAL, or 'ZBK' in *> columns 1-3 to test CGEBAK. *> *> The remaining lines consist of specially constructed test cases. *> *>----------------------------------------------------------------------- *> *> ZGL and ZGK input files: *> *> line 1: 'ZGL' in columns 1-3 to test ZGGBAL, or 'ZGK' in *> columns 1-3 to test ZGGBAK. *> *> The remaining lines consist of specially constructed test cases. *> *>----------------------------------------------------------------------- *> *> GLM data file: *> *> line 1: 'GLM' in columns 1 to 3. *> *> line 2: NN, INTEGER *> Number of values of M, P, and N. *> *> line 3: MVAL, INTEGER array, dimension(NN) *> Values of M (row dimension). *> *> line 4: PVAL, INTEGER array, dimension(NN) *> Values of P (row dimension). *> *> line 5: NVAL, INTEGER array, dimension(NN) *> Values of N (column dimension), note M <= N <= M+P. *> *> line 6: THRESH, REAL *> Threshold value for the test ratios. Information will be *> printed about each test for which the test ratio is greater *> than or equal to the threshold. *> *> line 7: TSTERR, LOGICAL *> Flag indicating whether or not to test the error exits for *> the LAPACK routines and driver routines. *> *> line 8: NEWSD, INTEGER *> A code indicating how to set the random number seed. *> = 0: Set the seed to a default value before each run *> = 1: Initialize the seed to a default value only before the *> first run *> = 2: Like 1, but use the seed values on the next line *> *> If line 8 was 2: *> *> line 9: INTEGER array, dimension (4) *> Four integer values for the random number seed. *> *> lines 9-EOF: Lines specifying matrix types, as for NEP. *> The 3-character path name is 'GLM' for the generalized *> linear regression model routines. *> *>----------------------------------------------------------------------- *> *> GQR data file: *> *> line 1: 'GQR' in columns 1 to 3. *> *> line 2: NN, INTEGER *> Number of values of M, P, and N. *> *> line 3: MVAL, INTEGER array, dimension(NN) *> Values of M. *> *> line 4: PVAL, INTEGER array, dimension(NN) *> Values of P. *> *> line 5: NVAL, INTEGER array, dimension(NN) *> Values of N. *> *> line 6: THRESH, REAL *> Threshold value for the test ratios. Information will be *> printed about each test for which the test ratio is greater *> than or equal to the threshold. *> *> line 7: TSTERR, LOGICAL *> Flag indicating whether or not to test the error exits for *> the LAPACK routines and driver routines. *> *> line 8: NEWSD, INTEGER *> A code indicating how to set the random number seed. *> = 0: Set the seed to a default value before each run *> = 1: Initialize the seed to a default value only before the *> first run *> = 2: Like 1, but use the seed values on the next line *> *> If line 8 was 2: *> *> line 9: INTEGER array, dimension (4) *> Four integer values for the random number seed. *> *> lines 9-EOF: Lines specifying matrix types, as for NEP. *> The 3-character path name is 'GQR' for the generalized *> QR and RQ routines. *> *>----------------------------------------------------------------------- *> *> GSV data file: *> *> line 1: 'GSV' in columns 1 to 3. *> *> line 2: NN, INTEGER *> Number of values of M, P, and N. *> *> line 3: MVAL, INTEGER array, dimension(NN) *> Values of M (row dimension). *> *> line 4: PVAL, INTEGER array, dimension(NN) *> Values of P (row dimension). *> *> line 5: NVAL, INTEGER array, dimension(NN) *> Values of N (column dimension). *> *> line 6: THRESH, REAL *> Threshold value for the test ratios. Information will be *> printed about each test for which the test ratio is greater *> than or equal to the threshold. *> *> line 7: TSTERR, LOGICAL *> Flag indicating whether or not to test the error exits for *> the LAPACK routines and driver routines. *> *> line 8: NEWSD, INTEGER *> A code indicating how to set the random number seed. *> = 0: Set the seed to a default value before each run *> = 1: Initialize the seed to a default value only before the *> first run *> = 2: Like 1, but use the seed values on the next line *> *> If line 8 was 2: *> *> line 9: INTEGER array, dimension (4) *> Four integer values for the random number seed. *> *> lines 9-EOF: Lines specifying matrix types, as for NEP. *> The 3-character path name is 'GSV' for the generalized *> SVD routines. *> *>----------------------------------------------------------------------- *> *> CSD data file: *> *> line 1: 'CSD' in columns 1 to 3. *> *> line 2: NM, INTEGER *> Number of values of M, P, and N. *> *> line 3: MVAL, INTEGER array, dimension(NM) *> Values of M (row and column dimension of orthogonal matrix). *> *> line 4: PVAL, INTEGER array, dimension(NM) *> Values of P (row dimension of top-left block). *> *> line 5: NVAL, INTEGER array, dimension(NM) *> Values of N (column dimension of top-left block). *> *> line 6: THRESH, REAL *> Threshold value for the test ratios. Information will be *> printed about each test for which the test ratio is greater *> than or equal to the threshold. *> *> line 7: TSTERR, LOGICAL *> Flag indicating whether or not to test the error exits for *> the LAPACK routines and driver routines. *> *> line 8: NEWSD, INTEGER *> A code indicating how to set the random number seed. *> = 0: Set the seed to a default value before each run *> = 1: Initialize the seed to a default value only before the *> first run *> = 2: Like 1, but use the seed values on the next line *> *> If line 8 was 2: *> *> line 9: INTEGER array, dimension (4) *> Four integer values for the random number seed. *> *> lines 9-EOF: Lines specifying matrix types, as for NEP. *> The 3-character path name is 'CSD' for the CSD routine. *> *>----------------------------------------------------------------------- *> *> LSE data file: *> *> line 1: 'LSE' in columns 1 to 3. *> *> line 2: NN, INTEGER *> Number of values of M, P, and N. *> *> line 3: MVAL, INTEGER array, dimension(NN) *> Values of M. *> *> line 4: PVAL, INTEGER array, dimension(NN) *> Values of P. *> *> line 5: NVAL, INTEGER array, dimension(NN) *> Values of N, note P <= N <= P+M. *> *> line 6: THRESH, REAL *> Threshold value for the test ratios. Information will be *> printed about each test for which the test ratio is greater *> than or equal to the threshold. *> *> line 7: TSTERR, LOGICAL *> Flag indicating whether or not to test the error exits for *> the LAPACK routines and driver routines. *> *> line 8: NEWSD, INTEGER *> A code indicating how to set the random number seed. *> = 0: Set the seed to a default value before each run *> = 1: Initialize the seed to a default value only before the *> first run *> = 2: Like 1, but use the seed values on the next line *> *> If line 8 was 2: *> *> line 9: INTEGER array, dimension (4) *> Four integer values for the random number seed. *> *> lines 9-EOF: Lines specifying matrix types, as for NEP. *> The 3-character path name is 'GSV' for the generalized *> SVD routines. *> *>----------------------------------------------------------------------- *> *> NMAX is currently set to 132 and must be at least 12 for some of the *> precomputed examples, and LWORK = NMAX*(5*NMAX+20) in the parameter *> statements below. For SVD, we assume NRHS may be as big as N. The *> parameter NEED is set to 14 to allow for 14 N-by-N matrices for ZGG. *> \endverbatim * * Arguments: * ========== * * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date November 2015 * *> \ingroup complex16_eig * * ===================================================================== PROGRAM ZCHKEE * * -- LAPACK test routine (version 3.6.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2015 * * ===================================================================== * * .. Parameters .. INTEGER NMAX PARAMETER ( NMAX = 132 ) INTEGER NCMAX PARAMETER ( NCMAX = 20 ) INTEGER NEED PARAMETER ( NEED = 14 ) INTEGER LWORK PARAMETER ( LWORK = NMAX*( 5*NMAX+20 ) ) INTEGER LIWORK PARAMETER ( LIWORK = NMAX*( NMAX+20 ) ) INTEGER MAXIN PARAMETER ( MAXIN = 20 ) INTEGER MAXT PARAMETER ( MAXT = 30 ) INTEGER NIN, NOUT PARAMETER ( NIN = 5, NOUT = 6 ) * .. * .. Local Scalars .. LOGICAL ZBK, ZBL, ZES, ZEV, ZGK, ZGL, ZGS, ZGV, ZGX, $ ZSX, ZVX, ZXV, CSD, FATAL, GLM, GQR, GSV, LSE, $ NEP, SEP, SVD, TSTCHK, TSTDIF, TSTDRV, TSTERR, $ ZBB, ZGG, ZHB CHARACTER C1 CHARACTER*3 C3, PATH CHARACTER*32 VNAME CHARACTER*10 INTSTR CHARACTER*80 LINE INTEGER I, I1, IC, INFO, ITMP, K, LENP, MAXTYP, NEWSD, $ NK, NN, NPARMS, NRHS, NTYPES, $ VERS_MAJOR, VERS_MINOR, VERS_PATCH DOUBLE PRECISION EPS, S1, S2, THRESH, THRSHN * .. * .. Local Arrays .. LOGICAL DOTYPE( MAXT ), LOGWRK( NMAX ) INTEGER IOLDSD( 4 ), ISEED( 4 ), IWORK( LIWORK ), $ KVAL( MAXIN ), MVAL( MAXIN ), MXBVAL( MAXIN ), $ NBCOL( MAXIN ), NBMIN( MAXIN ), NBVAL( MAXIN ), $ NSVAL( MAXIN ), NVAL( MAXIN ), NXVAL( MAXIN ), $ PVAL( MAXIN ) INTEGER INMIN( MAXIN ), INWIN( MAXIN ), INIBL( MAXIN ), $ ISHFTS( MAXIN ), IACC22( MAXIN ) DOUBLE PRECISION ALPHA( NMAX ), BETA( NMAX ), DR( NMAX, 12 ), $ RESULT( 500 ), RWORK( LWORK ), S( NMAX*NMAX ) COMPLEX*16 A( NMAX*NMAX, NEED ), B( NMAX*NMAX, 5 ), $ C( NCMAX*NCMAX, NCMAX*NCMAX ), DC( NMAX, 6 ), $ TAUA( NMAX ), TAUB( NMAX ), WORK( LWORK ), $ X( 5*NMAX ) * .. * .. External Functions .. LOGICAL LSAMEN DOUBLE PRECISION DLAMCH, DSECND EXTERNAL LSAMEN, DLAMCH, DSECND * .. * .. External Subroutines .. EXTERNAL ALAREQ, XLAENV, ZCHKBB, ZCHKBD, ZCHKBK, ZCHKBL, $ ZCHKEC, ZCHKGG, ZCHKGK, ZCHKGL, ZCHKHB, ZCHKHS, $ ZCHKST, ZCKCSD, ZCKGLM, ZCKGQR, ZCKGSV, ZCKLSE, $ ZDRGES, ZDRGEV, ZDRGSX, ZDRGVX, ZDRVBD, ZDRVES, $ ZDRVEV, ZDRVSG, ZDRVST, ZDRVSX, ZDRVVX, $ ZERRBD, ZERRED, ZERRGG, ZERRHS, ZERRST, ILAVER, $ ZDRGES3, ZDRGEV3 * .. * .. Intrinsic Functions .. INTRINSIC LEN, MIN * .. * .. Scalars in Common .. LOGICAL LERR, OK CHARACTER*32 SRNAMT INTEGER INFOT, MAXB, NPROC, NSHIFT, NUNIT, SELDIM, $ SELOPT * .. * .. Arrays in Common .. LOGICAL SELVAL( 20 ) INTEGER IPARMS( 100 ) DOUBLE PRECISION SELWI( 20 ), SELWR( 20 ) * .. * .. Common blocks .. COMMON / CENVIR / NPROC, NSHIFT, MAXB COMMON / INFOC / INFOT, NUNIT, OK, LERR COMMON / SRNAMC / SRNAMT COMMON / SSLCT / SELOPT, SELDIM, SELVAL, SELWR, SELWI COMMON / CLAENV / IPARMS * .. * .. Data statements .. DATA INTSTR / '0123456789' / DATA IOLDSD / 0, 0, 0, 1 / * .. * .. Executable Statements .. * A = 0.0 B = 0.0 C = 0.0 DC = 0.0 S1 = DSECND( ) FATAL = .FALSE. NUNIT = NOUT * * Return to here to read multiple sets of data * 10 CONTINUE * * Read the first line and set the 3-character test path * READ( NIN, FMT = '(A80)', END = 380 )LINE PATH = LINE( 1: 3 ) NEP = LSAMEN( 3, PATH, 'NEP' ) .OR. LSAMEN( 3, PATH, 'ZHS' ) SEP = LSAMEN( 3, PATH, 'SEP' ) .OR. LSAMEN( 3, PATH, 'ZST' ) .OR. $ LSAMEN( 3, PATH, 'ZSG' ) SVD = LSAMEN( 3, PATH, 'SVD' ) .OR. LSAMEN( 3, PATH, 'ZBD' ) ZEV = LSAMEN( 3, PATH, 'ZEV' ) ZES = LSAMEN( 3, PATH, 'ZES' ) ZVX = LSAMEN( 3, PATH, 'ZVX' ) ZSX = LSAMEN( 3, PATH, 'ZSX' ) ZGG = LSAMEN( 3, PATH, 'ZGG' ) ZGS = LSAMEN( 3, PATH, 'ZGS' ) ZGX = LSAMEN( 3, PATH, 'ZGX' ) ZGV = LSAMEN( 3, PATH, 'ZGV' ) ZXV = LSAMEN( 3, PATH, 'ZXV' ) ZHB = LSAMEN( 3, PATH, 'ZHB' ) ZBB = LSAMEN( 3, PATH, 'ZBB' ) GLM = LSAMEN( 3, PATH, 'GLM' ) GQR = LSAMEN( 3, PATH, 'GQR' ) .OR. LSAMEN( 3, PATH, 'GRQ' ) GSV = LSAMEN( 3, PATH, 'GSV' ) CSD = LSAMEN( 3, PATH, 'CSD' ) LSE = LSAMEN( 3, PATH, 'LSE' ) ZBL = LSAMEN( 3, PATH, 'ZBL' ) ZBK = LSAMEN( 3, PATH, 'ZBK' ) ZGL = LSAMEN( 3, PATH, 'ZGL' ) ZGK = LSAMEN( 3, PATH, 'ZGK' ) * * Report values of parameters. * IF( PATH.EQ.' ' ) THEN GO TO 10 ELSE IF( NEP ) THEN WRITE( NOUT, FMT = 9987 ) ELSE IF( SEP ) THEN WRITE( NOUT, FMT = 9986 ) ELSE IF( SVD ) THEN WRITE( NOUT, FMT = 9985 ) ELSE IF( ZEV ) THEN WRITE( NOUT, FMT = 9979 ) ELSE IF( ZES ) THEN WRITE( NOUT, FMT = 9978 ) ELSE IF( ZVX ) THEN WRITE( NOUT, FMT = 9977 ) ELSE IF( ZSX ) THEN WRITE( NOUT, FMT = 9976 ) ELSE IF( ZGG ) THEN WRITE( NOUT, FMT = 9975 ) ELSE IF( ZGS ) THEN WRITE( NOUT, FMT = 9964 ) ELSE IF( ZGX ) THEN WRITE( NOUT, FMT = 9965 ) ELSE IF( ZGV ) THEN WRITE( NOUT, FMT = 9963 ) ELSE IF( ZXV ) THEN WRITE( NOUT, FMT = 9962 ) ELSE IF( ZHB ) THEN WRITE( NOUT, FMT = 9974 ) ELSE IF( ZBB ) THEN WRITE( NOUT, FMT = 9967 ) ELSE IF( GLM ) THEN WRITE( NOUT, FMT = 9971 ) ELSE IF( GQR ) THEN WRITE( NOUT, FMT = 9970 ) ELSE IF( GSV ) THEN WRITE( NOUT, FMT = 9969 ) ELSE IF( CSD ) THEN WRITE( NOUT, FMT = 9960 ) ELSE IF( LSE ) THEN WRITE( NOUT, FMT = 9968 ) ELSE IF( ZBL ) THEN * * ZGEBAL: Balancing * CALL ZCHKBL( NIN, NOUT ) GO TO 380 ELSE IF( ZBK ) THEN * * ZGEBAK: Back transformation * CALL ZCHKBK( NIN, NOUT ) GO TO 380 ELSE IF( ZGL ) THEN * * ZGGBAL: Balancing * CALL ZCHKGL( NIN, NOUT ) GO TO 380 ELSE IF( ZGK ) THEN * * ZGGBAK: Back transformation * CALL ZCHKGK( NIN, NOUT ) GO TO 380 ELSE IF( LSAMEN( 3, PATH, 'ZEC' ) ) THEN * * ZEC: Eigencondition estimation * READ( NIN, FMT = * )THRESH CALL XLAENV( 1, 1 ) CALL XLAENV( 12, 1 ) TSTERR = .TRUE. CALL ZCHKEC( THRESH, TSTERR, NIN, NOUT ) GO TO 380 ELSE WRITE( NOUT, FMT = 9992 )PATH GO TO 380 END IF CALL ILAVER( VERS_MAJOR, VERS_MINOR, VERS_PATCH ) WRITE( NOUT, FMT = 9972 ) VERS_MAJOR, VERS_MINOR, VERS_PATCH WRITE( NOUT, FMT = 9984 ) * * Read the number of values of M, P, and N. * READ( NIN, FMT = * )NN IF( NN.LT.0 ) THEN WRITE( NOUT, FMT = 9989 )' NN ', NN, 1 NN = 0 FATAL = .TRUE. ELSE IF( NN.GT.MAXIN ) THEN WRITE( NOUT, FMT = 9988 )' NN ', NN, MAXIN NN = 0 FATAL = .TRUE. END IF * * Read the values of M * IF( .NOT.( ZGX .OR. ZXV ) ) THEN READ( NIN, FMT = * )( MVAL( I ), I = 1, NN ) IF( SVD ) THEN VNAME = ' M ' ELSE VNAME = ' N ' END IF DO 20 I = 1, NN IF( MVAL( I ).LT.0 ) THEN WRITE( NOUT, FMT = 9989 )VNAME, MVAL( I ), 0 FATAL = .TRUE. ELSE IF( MVAL( I ).GT.NMAX ) THEN WRITE( NOUT, FMT = 9988 )VNAME, MVAL( I ), NMAX FATAL = .TRUE. END IF 20 CONTINUE WRITE( NOUT, FMT = 9983 )'M: ', ( MVAL( I ), I = 1, NN ) END IF * * Read the values of P * IF( GLM .OR. GQR .OR. GSV .OR. CSD .OR. LSE ) THEN READ( NIN, FMT = * )( PVAL( I ), I = 1, NN ) DO 30 I = 1, NN IF( PVAL( I ).LT.0 ) THEN WRITE( NOUT, FMT = 9989 )' P ', PVAL( I ), 0 FATAL = .TRUE. ELSE IF( PVAL( I ).GT.NMAX ) THEN WRITE( NOUT, FMT = 9988 )' P ', PVAL( I ), NMAX FATAL = .TRUE. END IF 30 CONTINUE WRITE( NOUT, FMT = 9983 )'P: ', ( PVAL( I ), I = 1, NN ) END IF * * Read the values of N * IF( SVD .OR. ZBB .OR. GLM .OR. GQR .OR. GSV .OR. CSD .OR. $ LSE ) THEN READ( NIN, FMT = * )( NVAL( I ), I = 1, NN ) DO 40 I = 1, NN IF( NVAL( I ).LT.0 ) THEN WRITE( NOUT, FMT = 9989 )' N ', NVAL( I ), 0 FATAL = .TRUE. ELSE IF( NVAL( I ).GT.NMAX ) THEN WRITE( NOUT, FMT = 9988 )' N ', NVAL( I ), NMAX FATAL = .TRUE. END IF 40 CONTINUE ELSE DO 50 I = 1, NN NVAL( I ) = MVAL( I ) 50 CONTINUE END IF IF( .NOT.( ZGX .OR. ZXV ) ) THEN WRITE( NOUT, FMT = 9983 )'N: ', ( NVAL( I ), I = 1, NN ) ELSE WRITE( NOUT, FMT = 9983 )'N: ', NN END IF * * Read the number of values of K, followed by the values of K * IF( ZHB .OR. ZBB ) THEN READ( NIN, FMT = * )NK READ( NIN, FMT = * )( KVAL( I ), I = 1, NK ) DO 60 I = 1, NK IF( KVAL( I ).LT.0 ) THEN WRITE( NOUT, FMT = 9989 )' K ', KVAL( I ), 0 FATAL = .TRUE. ELSE IF( KVAL( I ).GT.NMAX ) THEN WRITE( NOUT, FMT = 9988 )' K ', KVAL( I ), NMAX FATAL = .TRUE. END IF 60 CONTINUE WRITE( NOUT, FMT = 9983 )'K: ', ( KVAL( I ), I = 1, NK ) END IF * IF( ZEV .OR. ZES .OR. ZVX .OR. ZSX ) THEN * * For the nonsymmetric QR driver routines, only one set of * parameters is allowed. * READ( NIN, FMT = * )NBVAL( 1 ), NBMIN( 1 ), NXVAL( 1 ), $ INMIN( 1 ), INWIN( 1 ), INIBL(1), ISHFTS(1), IACC22(1) IF( NBVAL( 1 ).LT.1 ) THEN WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( 1 ), 1 FATAL = .TRUE. ELSE IF( NBMIN( 1 ).LT.1 ) THEN WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( 1 ), 1 FATAL = .TRUE. ELSE IF( NXVAL( 1 ).LT.1 ) THEN WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( 1 ), 1 FATAL = .TRUE. ELSE IF( INMIN( 1 ).LT.1 ) THEN WRITE( NOUT, FMT = 9989 )' INMIN ', INMIN( 1 ), 1 FATAL = .TRUE. ELSE IF( INWIN( 1 ).LT.1 ) THEN WRITE( NOUT, FMT = 9989 )' INWIN ', INWIN( 1 ), 1 FATAL = .TRUE. ELSE IF( INIBL( 1 ).LT.1 ) THEN WRITE( NOUT, FMT = 9989 )' INIBL ', INIBL( 1 ), 1 FATAL = .TRUE. ELSE IF( ISHFTS( 1 ).LT.1 ) THEN WRITE( NOUT, FMT = 9989 )' ISHFTS ', ISHFTS( 1 ), 1 FATAL = .TRUE. ELSE IF( IACC22( 1 ).LT.0 ) THEN WRITE( NOUT, FMT = 9989 )' IACC22 ', IACC22( 1 ), 0 FATAL = .TRUE. END IF CALL XLAENV( 1, NBVAL( 1 ) ) CALL XLAENV( 2, NBMIN( 1 ) ) CALL XLAENV( 3, NXVAL( 1 ) ) CALL XLAENV(12, MAX( 11, INMIN( 1 ) ) ) CALL XLAENV(13, INWIN( 1 ) ) CALL XLAENV(14, INIBL( 1 ) ) CALL XLAENV(15, ISHFTS( 1 ) ) CALL XLAENV(16, IACC22( 1 ) ) WRITE( NOUT, FMT = 9983 )'NB: ', NBVAL( 1 ) WRITE( NOUT, FMT = 9983 )'NBMIN:', NBMIN( 1 ) WRITE( NOUT, FMT = 9983 )'NX: ', NXVAL( 1 ) WRITE( NOUT, FMT = 9983 )'INMIN: ', INMIN( 1 ) WRITE( NOUT, FMT = 9983 )'INWIN: ', INWIN( 1 ) WRITE( NOUT, FMT = 9983 )'INIBL: ', INIBL( 1 ) WRITE( NOUT, FMT = 9983 )'ISHFTS: ', ISHFTS( 1 ) WRITE( NOUT, FMT = 9983 )'IACC22: ', IACC22( 1 ) * ELSE IF( ZGS .OR. ZGX .OR. ZGV .OR. ZXV ) THEN * * For the nonsymmetric generalized driver routines, only one set of * parameters is allowed. * READ( NIN, FMT = * )NBVAL( 1 ), NBMIN( 1 ), NXVAL( 1 ), $ NSVAL( 1 ), MXBVAL( 1 ) IF( NBVAL( 1 ).LT.1 ) THEN WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( 1 ), 1 FATAL = .TRUE. ELSE IF( NBMIN( 1 ).LT.1 ) THEN WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( 1 ), 1 FATAL = .TRUE. ELSE IF( NXVAL( 1 ).LT.1 ) THEN WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( 1 ), 1 FATAL = .TRUE. ELSE IF( NSVAL( 1 ).LT.2 ) THEN WRITE( NOUT, FMT = 9989 )' NS ', NSVAL( 1 ), 2 FATAL = .TRUE. ELSE IF( MXBVAL( 1 ).LT.1 ) THEN WRITE( NOUT, FMT = 9989 )' MAXB ', MXBVAL( 1 ), 1 FATAL = .TRUE. END IF CALL XLAENV( 1, NBVAL( 1 ) ) CALL XLAENV( 2, NBMIN( 1 ) ) CALL XLAENV( 3, NXVAL( 1 ) ) CALL XLAENV( 4, NSVAL( 1 ) ) CALL XLAENV( 8, MXBVAL( 1 ) ) WRITE( NOUT, FMT = 9983 )'NB: ', NBVAL( 1 ) WRITE( NOUT, FMT = 9983 )'NBMIN:', NBMIN( 1 ) WRITE( NOUT, FMT = 9983 )'NX: ', NXVAL( 1 ) WRITE( NOUT, FMT = 9983 )'NS: ', NSVAL( 1 ) WRITE( NOUT, FMT = 9983 )'MAXB: ', MXBVAL( 1 ) ELSE IF( .NOT.ZHB .AND. .NOT.GLM .AND. .NOT.GQR .AND. .NOT. $ GSV .AND. .NOT.CSD .AND. .NOT.LSE ) THEN * * For the other paths, the number of parameters can be varied * from the input file. Read the number of parameter values. * READ( NIN, FMT = * )NPARMS IF( NPARMS.LT.1 ) THEN WRITE( NOUT, FMT = 9989 )'NPARMS', NPARMS, 1 NPARMS = 0 FATAL = .TRUE. ELSE IF( NPARMS.GT.MAXIN ) THEN WRITE( NOUT, FMT = 9988 )'NPARMS', NPARMS, MAXIN NPARMS = 0 FATAL = .TRUE. END IF * * Read the values of NB * IF( .NOT.ZBB ) THEN READ( NIN, FMT = * )( NBVAL( I ), I = 1, NPARMS ) DO 70 I = 1, NPARMS IF( NBVAL( I ).LT.0 ) THEN WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( I ), 0 FATAL = .TRUE. ELSE IF( NBVAL( I ).GT.NMAX ) THEN WRITE( NOUT, FMT = 9988 )' NB ', NBVAL( I ), NMAX FATAL = .TRUE. END IF 70 CONTINUE WRITE( NOUT, FMT = 9983 )'NB: ', $ ( NBVAL( I ), I = 1, NPARMS ) END IF * * Read the values of NBMIN * IF( NEP .OR. SEP .OR. SVD .OR. ZGG ) THEN READ( NIN, FMT = * )( NBMIN( I ), I = 1, NPARMS ) DO 80 I = 1, NPARMS IF( NBMIN( I ).LT.0 ) THEN WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( I ), 0 FATAL = .TRUE. ELSE IF( NBMIN( I ).GT.NMAX ) THEN WRITE( NOUT, FMT = 9988 )'NBMIN ', NBMIN( I ), NMAX FATAL = .TRUE. END IF 80 CONTINUE WRITE( NOUT, FMT = 9983 )'NBMIN:', $ ( NBMIN( I ), I = 1, NPARMS ) ELSE DO 90 I = 1, NPARMS NBMIN( I ) = 1 90 CONTINUE END IF * * Read the values of NX * IF( NEP .OR. SEP .OR. SVD ) THEN READ( NIN, FMT = * )( NXVAL( I ), I = 1, NPARMS ) DO 100 I = 1, NPARMS IF( NXVAL( I ).LT.0 ) THEN WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( I ), 0 FATAL = .TRUE. ELSE IF( NXVAL( I ).GT.NMAX ) THEN WRITE( NOUT, FMT = 9988 )' NX ', NXVAL( I ), NMAX FATAL = .TRUE. END IF 100 CONTINUE WRITE( NOUT, FMT = 9983 )'NX: ', $ ( NXVAL( I ), I = 1, NPARMS ) ELSE DO 110 I = 1, NPARMS NXVAL( I ) = 1 110 CONTINUE END IF * * Read the values of NSHIFT (if ZGG) or NRHS (if SVD * or ZBB). * IF( SVD .OR. ZBB .OR. ZGG ) THEN READ( NIN, FMT = * )( NSVAL( I ), I = 1, NPARMS ) DO 120 I = 1, NPARMS IF( NSVAL( I ).LT.0 ) THEN WRITE( NOUT, FMT = 9989 )' NS ', NSVAL( I ), 0 FATAL = .TRUE. ELSE IF( NSVAL( I ).GT.NMAX ) THEN WRITE( NOUT, FMT = 9988 )' NS ', NSVAL( I ), NMAX FATAL = .TRUE. END IF 120 CONTINUE WRITE( NOUT, FMT = 9983 )'NS: ', $ ( NSVAL( I ), I = 1, NPARMS ) ELSE DO 130 I = 1, NPARMS NSVAL( I ) = 1 130 CONTINUE END IF * * Read the values for MAXB. * IF( ZGG ) THEN READ( NIN, FMT = * )( MXBVAL( I ), I = 1, NPARMS ) DO 140 I = 1, NPARMS IF( MXBVAL( I ).LT.0 ) THEN WRITE( NOUT, FMT = 9989 )' MAXB ', MXBVAL( I ), 0 FATAL = .TRUE. ELSE IF( MXBVAL( I ).GT.NMAX ) THEN WRITE( NOUT, FMT = 9988 )' MAXB ', MXBVAL( I ), NMAX FATAL = .TRUE. END IF 140 CONTINUE WRITE( NOUT, FMT = 9983 )'MAXB: ', $ ( MXBVAL( I ), I = 1, NPARMS ) ELSE DO 150 I = 1, NPARMS MXBVAL( I ) = 1 150 CONTINUE END IF * * Read the values for INMIN. * IF( NEP ) THEN READ( NIN, FMT = * )( INMIN( I ), I = 1, NPARMS ) DO 540 I = 1, NPARMS IF( INMIN( I ).LT.0 ) THEN WRITE( NOUT, FMT = 9989 )' INMIN ', INMIN( I ), 0 FATAL = .TRUE. END IF 540 CONTINUE WRITE( NOUT, FMT = 9983 )'INMIN: ', $ ( INMIN( I ), I = 1, NPARMS ) ELSE DO 550 I = 1, NPARMS INMIN( I ) = 1 550 CONTINUE END IF * * Read the values for INWIN. * IF( NEP ) THEN READ( NIN, FMT = * )( INWIN( I ), I = 1, NPARMS ) DO 560 I = 1, NPARMS IF( INWIN( I ).LT.0 ) THEN WRITE( NOUT, FMT = 9989 )' INWIN ', INWIN( I ), 0 FATAL = .TRUE. END IF 560 CONTINUE WRITE( NOUT, FMT = 9983 )'INWIN: ', $ ( INWIN( I ), I = 1, NPARMS ) ELSE DO 570 I = 1, NPARMS INWIN( I ) = 1 570 CONTINUE END IF * * Read the values for INIBL. * IF( NEP ) THEN READ( NIN, FMT = * )( INIBL( I ), I = 1, NPARMS ) DO 580 I = 1, NPARMS IF( INIBL( I ).LT.0 ) THEN WRITE( NOUT, FMT = 9989 )' INIBL ', INIBL( I ), 0 FATAL = .TRUE. END IF 580 CONTINUE WRITE( NOUT, FMT = 9983 )'INIBL: ', $ ( INIBL( I ), I = 1, NPARMS ) ELSE DO 590 I = 1, NPARMS INIBL( I ) = 1 590 CONTINUE END IF * * Read the values for ISHFTS. * IF( NEP ) THEN READ( NIN, FMT = * )( ISHFTS( I ), I = 1, NPARMS ) DO 600 I = 1, NPARMS IF( ISHFTS( I ).LT.0 ) THEN WRITE( NOUT, FMT = 9989 )' ISHFTS ', ISHFTS( I ), 0 FATAL = .TRUE. END IF 600 CONTINUE WRITE( NOUT, FMT = 9983 )'ISHFTS: ', $ ( ISHFTS( I ), I = 1, NPARMS ) ELSE DO 610 I = 1, NPARMS ISHFTS( I ) = 1 610 CONTINUE END IF * * Read the values for IACC22. * IF( NEP .OR. ZGG ) THEN READ( NIN, FMT = * )( IACC22( I ), I = 1, NPARMS ) DO 620 I = 1, NPARMS IF( IACC22( I ).LT.0 ) THEN WRITE( NOUT, FMT = 9989 )' IACC22 ', IACC22( I ), 0 FATAL = .TRUE. END IF 620 CONTINUE WRITE( NOUT, FMT = 9983 )'IACC22: ', $ ( IACC22( I ), I = 1, NPARMS ) ELSE DO 630 I = 1, NPARMS IACC22( I ) = 1 630 CONTINUE END IF * * Read the values for NBCOL. * IF( ZGG ) THEN READ( NIN, FMT = * )( NBCOL( I ), I = 1, NPARMS ) DO 160 I = 1, NPARMS IF( NBCOL( I ).LT.0 ) THEN WRITE( NOUT, FMT = 9989 )'NBCOL ', NBCOL( I ), 0 FATAL = .TRUE. ELSE IF( NBCOL( I ).GT.NMAX ) THEN WRITE( NOUT, FMT = 9988 )'NBCOL ', NBCOL( I ), NMAX FATAL = .TRUE. END IF 160 CONTINUE WRITE( NOUT, FMT = 9983 )'NBCOL:', $ ( NBCOL( I ), I = 1, NPARMS ) ELSE DO 170 I = 1, NPARMS NBCOL( I ) = 1 170 CONTINUE END IF END IF * * Calculate and print the machine dependent constants. * WRITE( NOUT, FMT = * ) EPS = DLAMCH( 'Underflow threshold' ) WRITE( NOUT, FMT = 9981 )'underflow', EPS EPS = DLAMCH( 'Overflow threshold' ) WRITE( NOUT, FMT = 9981 )'overflow ', EPS EPS = DLAMCH( 'Epsilon' ) WRITE( NOUT, FMT = 9981 )'precision', EPS * * Read the threshold value for the test ratios. * READ( NIN, FMT = * )THRESH WRITE( NOUT, FMT = 9982 )THRESH IF( SEP .OR. SVD .OR. ZGG ) THEN * * Read the flag that indicates whether to test LAPACK routines. * READ( NIN, FMT = * )TSTCHK * * Read the flag that indicates whether to test driver routines. * READ( NIN, FMT = * )TSTDRV END IF * * Read the flag that indicates whether to test the error exits. * READ( NIN, FMT = * )TSTERR * * Read the code describing how to set the random number seed. * READ( NIN, FMT = * )NEWSD * * If NEWSD = 2, read another line with 4 integers for the seed. * IF( NEWSD.EQ.2 ) $ READ( NIN, FMT = * )( IOLDSD( I ), I = 1, 4 ) * DO 180 I = 1, 4 ISEED( I ) = IOLDSD( I ) 180 CONTINUE * IF( FATAL ) THEN WRITE( NOUT, FMT = 9999 ) STOP END IF * * Read the input lines indicating the test path and its parameters. * The first three characters indicate the test path, and the number * of test matrix types must be the first nonblank item in columns * 4-80. * 190 CONTINUE * IF( .NOT.( ZGX .OR. ZXV ) ) THEN * 200 CONTINUE READ( NIN, FMT = '(A80)', END = 380 )LINE C3 = LINE( 1: 3 ) LENP = LEN( LINE ) I = 3 ITMP = 0 I1 = 0 210 CONTINUE I = I + 1 IF( I.GT.LENP ) THEN IF( I1.GT.0 ) THEN GO TO 240 ELSE NTYPES = MAXT GO TO 240 END IF END IF IF( LINE( I: I ).NE.' ' .AND. LINE( I: I ).NE.',' ) THEN I1 = I C1 = LINE( I1: I1 ) * * Check that a valid integer was read * DO 220 K = 1, 10 IF( C1.EQ.INTSTR( K: K ) ) THEN IC = K - 1 GO TO 230 END IF 220 CONTINUE WRITE( NOUT, FMT = 9991 )I, LINE GO TO 200 230 CONTINUE ITMP = 10*ITMP + IC GO TO 210 ELSE IF( I1.GT.0 ) THEN GO TO 240 ELSE GO TO 210 END IF 240 CONTINUE NTYPES = ITMP * * Skip the tests if NTYPES is <= 0. * IF( .NOT.( ZEV .OR. ZES .OR. ZVX .OR. ZSX .OR. ZGV .OR. $ ZGS ) .AND. NTYPES.LE.0 ) THEN WRITE( NOUT, FMT = 9990 )C3 GO TO 200 END IF * ELSE IF( ZGX ) $ C3 = 'ZGX' IF( ZXV ) $ C3 = 'ZXV' END IF * * Reset the random number seed. * IF( NEWSD.EQ.0 ) THEN DO 250 K = 1, 4 ISEED( K ) = IOLDSD( K ) 250 CONTINUE END IF * IF( LSAMEN( 3, C3, 'ZHS' ) .OR. LSAMEN( 3, C3, 'NEP' ) ) THEN * * ------------------------------------- * NEP: Nonsymmetric Eigenvalue Problem * ------------------------------------- * Vary the parameters * NB = block size * NBMIN = minimum block size * NX = crossover point * NS = number of shifts * MAXB = minimum submatrix size * MAXTYP = 21 NTYPES = MIN( MAXTYP, NTYPES ) CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) CALL XLAENV( 1, 1 ) IF( TSTERR ) $ CALL ZERRHS( 'ZHSEQR', NOUT ) DO 270 I = 1, NPARMS CALL XLAENV( 1, NBVAL( I ) ) CALL XLAENV( 2, NBMIN( I ) ) CALL XLAENV( 3, NXVAL( I ) ) CALL XLAENV(12, MAX( 11, INMIN( I ) ) ) CALL XLAENV(13, INWIN( I ) ) CALL XLAENV(14, INIBL( I ) ) CALL XLAENV(15, ISHFTS( I ) ) CALL XLAENV(16, IACC22( I ) ) * IF( NEWSD.EQ.0 ) THEN DO 260 K = 1, 4 ISEED( K ) = IOLDSD( K ) 260 CONTINUE END IF WRITE( NOUT, FMT = 9961 )C3, NBVAL( I ), NBMIN( I ), $ NXVAL( I ), MAX( 11, INMIN(I)), $ INWIN( I ), INIBL( I ), ISHFTS( I ), IACC22( I ) CALL ZCHKHS( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), $ A( 1, 4 ), A( 1, 5 ), NMAX, A( 1, 6 ), $ A( 1, 7 ), DC( 1, 1 ), DC( 1, 2 ), A( 1, 8 ), $ A( 1, 9 ), A( 1, 10 ), A( 1, 11 ), A( 1, 12 ), $ DC( 1, 3 ), WORK, LWORK, RWORK, IWORK, LOGWRK, $ RESULT, INFO ) IF( INFO.NE.0 ) $ WRITE( NOUT, FMT = 9980 )'ZCHKHS', INFO 270 CONTINUE * ELSE IF( LSAMEN( 3, C3, 'ZST' ) .OR. LSAMEN( 3, C3, 'SEP' ) ) THEN * * ---------------------------------- * SEP: Symmetric Eigenvalue Problem * ---------------------------------- * Vary the parameters * NB = block size * NBMIN = minimum block size * NX = crossover point * MAXTYP = 21 NTYPES = MIN( MAXTYP, NTYPES ) CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) CALL XLAENV( 1, 1 ) CALL XLAENV( 9, 25 ) IF( TSTERR ) $ CALL ZERRST( 'ZST', NOUT ) DO 290 I = 1, NPARMS CALL XLAENV( 1, NBVAL( I ) ) CALL XLAENV( 2, NBMIN( I ) ) CALL XLAENV( 3, NXVAL( I ) ) * IF( NEWSD.EQ.0 ) THEN DO 280 K = 1, 4 ISEED( K ) = IOLDSD( K ) 280 CONTINUE END IF WRITE( NOUT, FMT = 9997 )C3, NBVAL( I ), NBMIN( I ), $ NXVAL( I ) IF( TSTCHK ) THEN CALL ZCHKST( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), $ DR( 1, 1 ), DR( 1, 2 ), DR( 1, 3 ), $ DR( 1, 4 ), DR( 1, 5 ), DR( 1, 6 ), $ DR( 1, 7 ), DR( 1, 8 ), DR( 1, 9 ), $ DR( 1, 10 ), DR( 1, 11 ), A( 1, 3 ), NMAX, $ A( 1, 4 ), A( 1, 5 ), DC( 1, 1 ), A( 1, 6 ), $ WORK, LWORK, RWORK, LWORK, IWORK, LIWORK, $ RESULT, INFO ) IF( INFO.NE.0 ) $ WRITE( NOUT, FMT = 9980 )'ZCHKST', INFO END IF IF( TSTDRV ) THEN CALL ZDRVST( NN, NVAL, 18, DOTYPE, ISEED, THRESH, NOUT, $ A( 1, 1 ), NMAX, DR( 1, 3 ), DR( 1, 4 ), $ DR( 1, 5 ), DR( 1, 8 ), DR( 1, 9 ), $ DR( 1, 10 ), A( 1, 2 ), NMAX, A( 1, 3 ), $ DC( 1, 1 ), A( 1, 4 ), WORK, LWORK, RWORK, $ LWORK, IWORK, LIWORK, RESULT, INFO ) IF( INFO.NE.0 ) $ WRITE( NOUT, FMT = 9980 )'ZDRVST', INFO END IF 290 CONTINUE * ELSE IF( LSAMEN( 3, C3, 'ZSG' ) ) THEN * * ---------------------------------------------- * ZSG: Hermitian Generalized Eigenvalue Problem * ---------------------------------------------- * Vary the parameters * NB = block size * NBMIN = minimum block size * NX = crossover point * MAXTYP = 21 NTYPES = MIN( MAXTYP, NTYPES ) CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) CALL XLAENV( 9, 25 ) DO 310 I = 1, NPARMS CALL XLAENV( 1, NBVAL( I ) ) CALL XLAENV( 2, NBMIN( I ) ) CALL XLAENV( 3, NXVAL( I ) ) * IF( NEWSD.EQ.0 ) THEN DO 300 K = 1, 4 ISEED( K ) = IOLDSD( K ) 300 CONTINUE END IF WRITE( NOUT, FMT = 9997 )C3, NBVAL( I ), NBMIN( I ), $ NXVAL( I ) IF( TSTCHK ) THEN CALL ZDRVSG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX, $ DR( 1, 3 ), A( 1, 3 ), NMAX, A( 1, 4 ), $ A( 1, 5 ), A( 1, 6 ), A( 1, 7 ), WORK, $ LWORK, RWORK, LWORK, IWORK, LIWORK, RESULT, $ INFO ) IF( INFO.NE.0 ) $ WRITE( NOUT, FMT = 9980 )'ZDRVSG', INFO END IF 310 CONTINUE * ELSE IF( LSAMEN( 3, C3, 'ZBD' ) .OR. LSAMEN( 3, C3, 'SVD' ) ) THEN * * ---------------------------------- * SVD: Singular Value Decomposition * ---------------------------------- * Vary the parameters * NB = block size * NBMIN = minimum block size * NX = crossover point * NRHS = number of right hand sides * MAXTYP = 16 NTYPES = MIN( MAXTYP, NTYPES ) CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) CALL XLAENV( 9, 25 ) * * Test the error exits * CALL XLAENV( 1, 1 ) IF( TSTERR .AND. TSTCHK ) $ CALL ZERRBD( 'ZBD', NOUT ) IF( TSTERR .AND. TSTDRV ) $ CALL ZERRED( 'ZBD', NOUT ) * DO 330 I = 1, NPARMS NRHS = NSVAL( I ) CALL XLAENV( 1, NBVAL( I ) ) CALL XLAENV( 2, NBMIN( I ) ) CALL XLAENV( 3, NXVAL( I ) ) IF( NEWSD.EQ.0 ) THEN DO 320 K = 1, 4 ISEED( K ) = IOLDSD( K ) 320 CONTINUE END IF WRITE( NOUT, FMT = 9995 )C3, NBVAL( I ), NBMIN( I ), $ NXVAL( I ), NRHS IF( TSTCHK ) THEN CALL ZCHKBD( NN, MVAL, NVAL, MAXTYP, DOTYPE, NRHS, ISEED, $ THRESH, A( 1, 1 ), NMAX, DR( 1, 1 ), $ DR( 1, 2 ), DR( 1, 3 ), DR( 1, 4 ), $ A( 1, 2 ), NMAX, A( 1, 3 ), A( 1, 4 ), $ A( 1, 5 ), NMAX, A( 1, 6 ), NMAX, A( 1, 7 ), $ A( 1, 8 ), WORK, LWORK, RWORK, NOUT, INFO ) IF( INFO.NE.0 ) $ WRITE( NOUT, FMT = 9980 )'ZCHKBD', INFO END IF IF( TSTDRV ) $ CALL ZDRVBD( NN, MVAL, NVAL, MAXTYP, DOTYPE, ISEED, $ THRESH, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX, $ A( 1, 3 ), NMAX, A( 1, 4 ), A( 1, 5 ), $ A( 1, 6 ), DR( 1, 1 ), DR( 1, 2 ), $ DR( 1, 3 ), WORK, LWORK, RWORK, IWORK, NOUT, $ INFO ) 330 CONTINUE * ELSE IF( LSAMEN( 3, C3, 'ZEV' ) ) THEN * * -------------------------------------------- * ZEV: Nonsymmetric Eigenvalue Problem Driver * ZGEEV (eigenvalues and eigenvectors) * -------------------------------------------- * MAXTYP = 21 NTYPES = MIN( MAXTYP, NTYPES ) IF( NTYPES.LE.0 ) THEN WRITE( NOUT, FMT = 9990 )C3 ELSE IF( TSTERR ) $ CALL ZERRED( C3, NOUT ) CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) CALL ZDRVEV( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NOUT, $ A( 1, 1 ), NMAX, A( 1, 2 ), DC( 1, 1 ), $ DC( 1, 2 ), A( 1, 3 ), NMAX, A( 1, 4 ), NMAX, $ A( 1, 5 ), NMAX, RESULT, WORK, LWORK, RWORK, $ IWORK, INFO ) IF( INFO.NE.0 ) $ WRITE( NOUT, FMT = 9980 )'ZGEEV', INFO END IF WRITE( NOUT, FMT = 9973 ) GO TO 10 * ELSE IF( LSAMEN( 3, C3, 'ZES' ) ) THEN * * -------------------------------------------- * ZES: Nonsymmetric Eigenvalue Problem Driver * ZGEES (Schur form) * -------------------------------------------- * MAXTYP = 21 NTYPES = MIN( MAXTYP, NTYPES ) IF( NTYPES.LE.0 ) THEN WRITE( NOUT, FMT = 9990 )C3 ELSE IF( TSTERR ) $ CALL ZERRED( C3, NOUT ) CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) CALL ZDRVES( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NOUT, $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), $ DC( 1, 1 ), DC( 1, 2 ), A( 1, 4 ), NMAX, $ RESULT, WORK, LWORK, RWORK, IWORK, LOGWRK, $ INFO ) IF( INFO.NE.0 ) $ WRITE( NOUT, FMT = 9980 )'ZGEES', INFO END IF WRITE( NOUT, FMT = 9973 ) GO TO 10 * ELSE IF( LSAMEN( 3, C3, 'ZVX' ) ) THEN * * -------------------------------------------------------------- * ZVX: Nonsymmetric Eigenvalue Problem Expert Driver * ZGEEVX (eigenvalues, eigenvectors and condition numbers) * -------------------------------------------------------------- * MAXTYP = 21 NTYPES = MIN( MAXTYP, NTYPES ) IF( NTYPES.LT.0 ) THEN WRITE( NOUT, FMT = 9990 )C3 ELSE IF( TSTERR ) $ CALL ZERRED( C3, NOUT ) CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) CALL ZDRVVX( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NIN, $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), DC( 1, 1 ), $ DC( 1, 2 ), A( 1, 3 ), NMAX, A( 1, 4 ), NMAX, $ A( 1, 5 ), NMAX, DR( 1, 1 ), DR( 1, 2 ), $ DR( 1, 3 ), DR( 1, 4 ), DR( 1, 5 ), DR( 1, 6 ), $ DR( 1, 7 ), DR( 1, 8 ), RESULT, WORK, LWORK, $ RWORK, INFO ) IF( INFO.NE.0 ) $ WRITE( NOUT, FMT = 9980 )'ZGEEVX', INFO END IF WRITE( NOUT, FMT = 9973 ) GO TO 10 * ELSE IF( LSAMEN( 3, C3, 'ZSX' ) ) THEN * * --------------------------------------------------- * ZSX: Nonsymmetric Eigenvalue Problem Expert Driver * ZGEESX (Schur form and condition numbers) * --------------------------------------------------- * MAXTYP = 21 NTYPES = MIN( MAXTYP, NTYPES ) IF( NTYPES.LT.0 ) THEN WRITE( NOUT, FMT = 9990 )C3 ELSE IF( TSTERR ) $ CALL ZERRED( C3, NOUT ) CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) CALL ZDRVSX( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NIN, $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), $ DC( 1, 1 ), DC( 1, 2 ), DC( 1, 3 ), A( 1, 4 ), $ NMAX, A( 1, 5 ), RESULT, WORK, LWORK, RWORK, $ LOGWRK, INFO ) IF( INFO.NE.0 ) $ WRITE( NOUT, FMT = 9980 )'ZGEESX', INFO END IF WRITE( NOUT, FMT = 9973 ) GO TO 10 * ELSE IF( LSAMEN( 3, C3, 'ZGG' ) ) THEN * * ------------------------------------------------- * ZGG: Generalized Nonsymmetric Eigenvalue Problem * ------------------------------------------------- * Vary the parameters * NB = block size * NBMIN = minimum block size * NS = number of shifts * MAXB = minimum submatrix size * IACC22: structured matrix multiply * NBCOL = minimum column dimension for blocks * MAXTYP = 26 NTYPES = MIN( MAXTYP, NTYPES ) CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) IF( TSTCHK .AND. TSTERR ) $ CALL ZERRGG( C3, NOUT ) DO 350 I = 1, NPARMS CALL XLAENV( 1, NBVAL( I ) ) CALL XLAENV( 2, NBMIN( I ) ) CALL XLAENV( 4, NSVAL( I ) ) CALL XLAENV( 8, MXBVAL( I ) ) CALL XLAENV( 16, IACC22( I ) ) CALL XLAENV( 5, NBCOL( I ) ) * IF( NEWSD.EQ.0 ) THEN DO 340 K = 1, 4 ISEED( K ) = IOLDSD( K ) 340 CONTINUE END IF WRITE( NOUT, FMT = 9996 )C3, NBVAL( I ), NBMIN( I ), $ NSVAL( I ), MXBVAL( I ), IACC22( I ), NBCOL( I ) TSTDIF = .FALSE. THRSHN = 10.D0 IF( TSTCHK ) THEN CALL ZCHKGG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, $ TSTDIF, THRSHN, NOUT, A( 1, 1 ), NMAX, $ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), A( 1, 5 ), $ A( 1, 6 ), A( 1, 7 ), A( 1, 8 ), A( 1, 9 ), $ NMAX, A( 1, 10 ), A( 1, 11 ), A( 1, 12 ), $ DC( 1, 1 ), DC( 1, 2 ), DC( 1, 3 ), $ DC( 1, 4 ), A( 1, 13 ), A( 1, 14 ), WORK, $ LWORK, RWORK, LOGWRK, RESULT, INFO ) IF( INFO.NE.0 ) $ WRITE( NOUT, FMT = 9980 )'ZCHKGG', INFO END IF 350 CONTINUE * ELSE IF( LSAMEN( 3, C3, 'ZGS' ) ) THEN * * ------------------------------------------------- * ZGS: Generalized Nonsymmetric Eigenvalue Problem * ZGGES (Schur form) * ------------------------------------------------- * MAXTYP = 26 NTYPES = MIN( MAXTYP, NTYPES ) IF( NTYPES.LE.0 ) THEN WRITE( NOUT, FMT = 9990 )C3 ELSE IF( TSTERR ) $ CALL ZERRGG( C3, NOUT ) CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) CALL ZDRGES( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ), $ DC( 1, 1 ), DC( 1, 2 ), WORK, LWORK, RWORK, $ RESULT, LOGWRK, INFO ) * IF( INFO.NE.0 ) $ WRITE( NOUT, FMT = 9980 )'ZDRGES', INFO * * Blocked version * CALL ZDRGES3( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ), $ DC( 1, 1 ), DC( 1, 2 ), WORK, LWORK, RWORK, $ RESULT, LOGWRK, INFO ) * IF( INFO.NE.0 ) $ WRITE( NOUT, FMT = 9980 )'ZDRGES3', INFO END IF WRITE( NOUT, FMT = 9973 ) GO TO 10 * ELSE IF( ZGX ) THEN * * ------------------------------------------------- * ZGX Generalized Nonsymmetric Eigenvalue Problem * ZGGESX (Schur form and condition numbers) * ------------------------------------------------- * MAXTYP = 5 NTYPES = MAXTYP IF( NN.LT.0 ) THEN WRITE( NOUT, FMT = 9990 )C3 ELSE IF( TSTERR ) $ CALL ZERRGG( C3, NOUT ) CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) CALL XLAENV( 5, 2 ) CALL ZDRGSX( NN, NCMAX, THRESH, NIN, NOUT, A( 1, 1 ), NMAX, $ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), A( 1, 5 ), $ A( 1, 6 ), DC( 1, 1 ), DC( 1, 2 ), C, $ NCMAX*NCMAX, S, WORK, LWORK, RWORK, IWORK, $ LIWORK, LOGWRK, INFO ) IF( INFO.NE.0 ) $ WRITE( NOUT, FMT = 9980 )'ZDRGSX', INFO END IF WRITE( NOUT, FMT = 9973 ) GO TO 10 * ELSE IF( LSAMEN( 3, C3, 'ZGV' ) ) THEN * * ------------------------------------------------- * ZGV: Generalized Nonsymmetric Eigenvalue Problem * ZGGEV (Eigenvalue/vector form) * ------------------------------------------------- * MAXTYP = 26 NTYPES = MIN( MAXTYP, NTYPES ) IF( NTYPES.LE.0 ) THEN WRITE( NOUT, FMT = 9990 )C3 ELSE IF( TSTERR ) $ CALL ZERRGG( C3, NOUT ) CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) CALL ZDRGEV( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ), $ A( 1, 9 ), NMAX, DC( 1, 1 ), DC( 1, 2 ), $ DC( 1, 3 ), DC( 1, 4 ), WORK, LWORK, RWORK, $ RESULT, INFO ) IF( INFO.NE.0 ) $ WRITE( NOUT, FMT = 9980 )'ZDRGEV', INFO * * Blocked version * CALL ZDRGEV3( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ), $ A( 1, 9 ), NMAX, DC( 1, 1 ), DC( 1, 2 ), $ DC( 1, 3 ), DC( 1, 4 ), WORK, LWORK, RWORK, $ RESULT, INFO ) IF( INFO.NE.0 ) $ WRITE( NOUT, FMT = 9980 )'ZDRGEV3', INFO END IF WRITE( NOUT, FMT = 9973 ) GO TO 10 * ELSE IF( ZXV ) THEN * * ------------------------------------------------- * ZXV: Generalized Nonsymmetric Eigenvalue Problem * ZGGEVX (eigenvalue/vector with condition numbers) * ------------------------------------------------- * MAXTYP = 2 NTYPES = MAXTYP IF( NN.LT.0 ) THEN WRITE( NOUT, FMT = 9990 )C3 ELSE IF( TSTERR ) $ CALL ZERRGG( C3, NOUT ) CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) CALL ZDRGVX( NN, THRESH, NIN, NOUT, A( 1, 1 ), NMAX, $ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), DC( 1, 1 ), $ DC( 1, 2 ), A( 1, 5 ), A( 1, 6 ), IWORK( 1 ), $ IWORK( 2 ), DR( 1, 1 ), DR( 1, 2 ), DR( 1, 3 ), $ DR( 1, 4 ), DR( 1, 5 ), DR( 1, 6 ), WORK, $ LWORK, RWORK, IWORK( 3 ), LIWORK-2, RESULT, $ LOGWRK, INFO ) * IF( INFO.NE.0 ) $ WRITE( NOUT, FMT = 9980 )'ZDRGVX', INFO END IF WRITE( NOUT, FMT = 9973 ) GO TO 10 * ELSE IF( LSAMEN( 3, C3, 'ZHB' ) ) THEN * * ------------------------------ * ZHB: Hermitian Band Reduction * ------------------------------ * MAXTYP = 15 NTYPES = MIN( MAXTYP, NTYPES ) CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) IF( TSTERR ) $ CALL ZERRST( 'ZHB', NOUT ) CALL ZCHKHB( NN, NVAL, NK, KVAL, MAXTYP, DOTYPE, ISEED, THRESH, $ NOUT, A( 1, 1 ), NMAX, DR( 1, 1 ), DR( 1, 2 ), $ A( 1, 2 ), NMAX, WORK, LWORK, RWORK, RESULT, $ INFO ) IF( INFO.NE.0 ) $ WRITE( NOUT, FMT = 9980 )'ZCHKHB', INFO * ELSE IF( LSAMEN( 3, C3, 'ZBB' ) ) THEN * * ------------------------------ * ZBB: General Band Reduction * ------------------------------ * MAXTYP = 15 NTYPES = MIN( MAXTYP, NTYPES ) CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) DO 370 I = 1, NPARMS NRHS = NSVAL( I ) * IF( NEWSD.EQ.0 ) THEN DO 360 K = 1, 4 ISEED( K ) = IOLDSD( K ) 360 CONTINUE END IF WRITE( NOUT, FMT = 9966 )C3, NRHS CALL ZCHKBB( NN, MVAL, NVAL, NK, KVAL, MAXTYP, DOTYPE, NRHS, $ ISEED, THRESH, NOUT, A( 1, 1 ), NMAX, $ A( 1, 2 ), 2*NMAX, DR( 1, 1 ), DR( 1, 2 ), $ A( 1, 4 ), NMAX, A( 1, 5 ), NMAX, A( 1, 6 ), $ NMAX, A( 1, 7 ), WORK, LWORK, RWORK, RESULT, $ INFO ) IF( INFO.NE.0 ) $ WRITE( NOUT, FMT = 9980 )'ZCHKBB', INFO 370 CONTINUE * ELSE IF( LSAMEN( 3, C3, 'GLM' ) ) THEN * * ----------------------------------------- * GLM: Generalized Linear Regression Model * ----------------------------------------- * CALL XLAENV( 1, 1 ) IF( TSTERR ) $ CALL ZERRGG( 'GLM', NOUT ) CALL ZCKGLM( NN, NVAL, MVAL, PVAL, NTYPES, ISEED, THRESH, NMAX, $ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ), X, $ WORK, DR( 1, 1 ), NIN, NOUT, INFO ) IF( INFO.NE.0 ) $ WRITE( NOUT, FMT = 9980 )'ZCKGLM', INFO * ELSE IF( LSAMEN( 3, C3, 'GQR' ) ) THEN * * ------------------------------------------ * GQR: Generalized QR and RQ factorizations * ------------------------------------------ * CALL XLAENV( 1, 1 ) IF( TSTERR ) $ CALL ZERRGG( 'GQR', NOUT ) CALL ZCKGQR( NN, MVAL, NN, PVAL, NN, NVAL, NTYPES, ISEED, $ THRESH, NMAX, A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), $ A( 1, 4 ), TAUA, B( 1, 1 ), B( 1, 2 ), B( 1, 3 ), $ B( 1, 4 ), B( 1, 5 ), TAUB, WORK, DR( 1, 1 ), NIN, $ NOUT, INFO ) IF( INFO.NE.0 ) $ WRITE( NOUT, FMT = 9980 )'ZCKGQR', INFO * ELSE IF( LSAMEN( 3, C3, 'GSV' ) ) THEN * * ---------------------------------------------- * GSV: Generalized Singular Value Decomposition * ---------------------------------------------- * IF( TSTERR ) $ CALL ZERRGG( 'GSV', NOUT ) CALL ZCKGSV( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX, $ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ), $ A( 1, 3 ), B( 1, 3 ), A( 1, 4 ), ALPHA, BETA, $ B( 1, 4 ), IWORK, WORK, DR( 1, 1 ), NIN, NOUT, $ INFO ) IF( INFO.NE.0 ) $ WRITE( NOUT, FMT = 9980 )'ZCKGSV', INFO * ELSE IF( LSAMEN( 3, C3, 'CSD' ) ) THEN * * ---------------------------------------------- * CSD: CS Decomposition * ---------------------------------------------- * CALL XLAENV(1,1) IF( TSTERR ) $ CALL ZERRGG( 'CSD', NOUT ) CALL ZCKCSD( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX, $ A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), $ A( 1, 5 ), A( 1, 6 ), RWORK, IWORK, WORK, $ DR( 1, 1 ), NIN, NOUT, INFO ) IF( INFO.NE.0 ) $ WRITE( NOUT, FMT = 9980 )'ZCKCSD', INFO * ELSE IF( LSAMEN( 3, C3, 'LSE' ) ) THEN * * -------------------------------------- * LSE: Constrained Linear Least Squares * -------------------------------------- * CALL XLAENV( 1, 1 ) IF( TSTERR ) $ CALL ZERRGG( 'LSE', NOUT ) CALL ZCKLSE( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX, $ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ), X, $ WORK, DR( 1, 1 ), NIN, NOUT, INFO ) IF( INFO.NE.0 ) $ WRITE( NOUT, FMT = 9980 )'ZCKLSE', INFO ELSE WRITE( NOUT, FMT = * ) WRITE( NOUT, FMT = * ) WRITE( NOUT, FMT = 9992 )C3 END IF IF( .NOT.( ZGX .OR. ZXV ) ) $ GO TO 190 380 CONTINUE WRITE( NOUT, FMT = 9994 ) S2 = DSECND( ) WRITE( NOUT, FMT = 9993 )S2 - S1 * 9999 FORMAT( / ' Execution not attempted due to input errors' ) 9997 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4 ) 9996 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NS =', I4, $ ', MAXB =', I4, ', IACC22 =', I4, ', NBCOL =', I4 ) 9995 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4, $ ', NRHS =', I4 ) 9994 FORMAT( / / ' End of tests' ) 9993 FORMAT( ' Total time used = ', F12.2, ' seconds', / ) 9992 FORMAT( 1X, A3, ': Unrecognized path name' ) 9991 FORMAT( / / ' *** Invalid integer value in column ', I2, $ ' of input', ' line:', / A79 ) 9990 FORMAT( / / 1X, A3, ' routines were not tested' ) 9989 FORMAT( ' Invalid input value: ', A, '=', I6, '; must be >=', $ I6 ) 9988 FORMAT( ' Invalid input value: ', A, '=', I6, '; must be <=', $ I6 ) 9987 FORMAT( ' Tests of the Nonsymmetric Eigenvalue Problem routines' ) 9986 FORMAT( ' Tests of the Hermitian Eigenvalue Problem routines' ) 9985 FORMAT( ' Tests of the Singular Value Decomposition routines' ) 9984 FORMAT( / ' The following parameter values will be used:' ) 9983 FORMAT( 4X, A, 10I6, / 10X, 10I6 ) 9982 FORMAT( / ' Routines pass computational tests if test ratio is ', $ 'less than', F8.2, / ) 9981 FORMAT( ' Relative machine ', A, ' is taken to be', D16.6 ) 9980 FORMAT( ' *** Error code from ', A, ' = ', I4 ) 9979 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Driver', $ / ' ZGEEV (eigenvalues and eigevectors)' ) 9978 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Driver', $ / ' ZGEES (Schur form)' ) 9977 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Expert', $ ' Driver', / ' ZGEEVX (eigenvalues, eigenvectors and', $ ' condition numbers)' ) 9976 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Expert', $ ' Driver', / ' ZGEESX (Schur form and condition', $ ' numbers)' ) 9975 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', $ 'Problem routines' ) 9974 FORMAT( ' Tests of ZHBTRD', / ' (reduction of a Hermitian band ', $ 'matrix to real tridiagonal form)' ) 9973 FORMAT( / 1X, 71( '-' ) ) 9972 FORMAT( / ' LAPACK VERSION ', I1, '.', I1, '.', I1 ) 9971 FORMAT( / ' Tests of the Generalized Linear Regression Model ', $ 'routines' ) 9970 FORMAT( / ' Tests of the Generalized QR and RQ routines' ) 9969 FORMAT( / ' Tests of the Generalized Singular Value', $ ' Decomposition routines' ) 9968 FORMAT( / ' Tests of the Linear Least Squares routines' ) 9967 FORMAT( ' Tests of ZGBBRD', / ' (reduction of a general band ', $ 'matrix to real bidiagonal form)' ) 9966 FORMAT( / / 1X, A3, ': NRHS =', I4 ) 9965 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', $ 'Problem Expert Driver ZGGESX' ) 9964 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', $ 'Problem Driver ZGGES' ) 9963 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', $ 'Problem Driver ZGGEV' ) 9962 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', $ 'Problem Expert Driver ZGGEVX' ) 9961 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4, $ ', INMIN=', I4, $ ', INWIN =', I4, ', INIBL =', I4, ', ISHFTS =', I4, $ ', IACC22 =', I4) 9960 FORMAT( / ' Tests of the CS Decomposition routines' ) * * End of ZCHKEE * END