*> \brief \b CCHKQ3 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE CCHKQ3( DOTYPE, NM, MVAL, NN, NVAL, NNB, NBVAL, NXVAL, * THRESH, A, COPYA, S, TAU, WORK, RWORK, * IWORK, NOUT ) * * .. Scalar Arguments .. * INTEGER NM, NN, NNB, NOUT * REAL THRESH * .. * .. Array Arguments .. * LOGICAL DOTYPE( * ) * INTEGER IWORK( * ), MVAL( * ), NBVAL( * ), NVAL( * ), * $ NXVAL( * ) * REAL S( * ), RWORK( * ) * COMPLEX A( * ), COPYA( * ), TAU( * ), WORK( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CCHKQ3 tests CGEQP3. *> \endverbatim * * Arguments: * ========== * *> \param[in] DOTYPE *> \verbatim *> DOTYPE is LOGICAL array, dimension (NTYPES) *> The matrix types to be used for testing. Matrices of type j *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. *> \endverbatim *> *> \param[in] NM *> \verbatim *> NM is INTEGER *> The number of values of M contained in the vector MVAL. *> \endverbatim *> *> \param[in] MVAL *> \verbatim *> MVAL is INTEGER array, dimension (NM) *> The values of the matrix row dimension M. *> \endverbatim *> *> \param[in] NN *> \verbatim *> NN is INTEGER *> The number of values of N contained in the vector NVAL. *> \endverbatim *> *> \param[in] NVAL *> \verbatim *> NVAL is INTEGER array, dimension (NN) *> The values of the matrix column dimension N. *> \endverbatim *> *> \param[in] NNB *> \verbatim *> NNB is INTEGER *> The number of values of NB and NX contained in the *> vectors NBVAL and NXVAL. The blocking parameters are used *> in pairs (NB,NX). *> \endverbatim *> *> \param[in] NBVAL *> \verbatim *> NBVAL is INTEGER array, dimension (NNB) *> The values of the blocksize NB. *> \endverbatim *> *> \param[in] NXVAL *> \verbatim *> NXVAL is INTEGER array, dimension (NNB) *> The values of the crossover point NX. *> \endverbatim *> *> \param[in] THRESH *> \verbatim *> THRESH is REAL *> The threshold value for the test ratios. A result is *> included in the output file if RESULT >= THRESH. To have *> every test ratio printed, use THRESH = 0. *> \endverbatim *> *> \param[out] A *> \verbatim *> A is COMPLEX array, dimension (MMAX*NMAX) *> where MMAX is the maximum value of M in MVAL and NMAX is the *> maximum value of N in NVAL. *> \endverbatim *> *> \param[out] COPYA *> \verbatim *> COPYA is COMPLEX array, dimension (MMAX*NMAX) *> \endverbatim *> *> \param[out] S *> \verbatim *> S is REAL array, dimension *> (min(MMAX,NMAX)) *> \endverbatim *> *> \param[out] TAU *> \verbatim *> TAU is COMPLEX array, dimension (MMAX) *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX array, dimension *> (max(M*max(M,N) + 4*min(M,N) + max(M,N))) *> \endverbatim *> *> \param[out] RWORK *> \verbatim *> RWORK is REAL array, dimension (4*NMAX) *> \endverbatim *> *> \param[out] IWORK *> \verbatim *> IWORK is INTEGER array, dimension (2*NMAX) *> \endverbatim *> *> \param[in] NOUT *> \verbatim *> NOUT is INTEGER *> The unit number for output. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date November 2011 * *> \ingroup complex_lin * * ===================================================================== SUBROUTINE CCHKQ3( DOTYPE, NM, MVAL, NN, NVAL, NNB, NBVAL, NXVAL, $ THRESH, A, COPYA, S, TAU, WORK, RWORK, $ IWORK, NOUT ) * * -- LAPACK test routine (version 3.4.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2011 * * .. Scalar Arguments .. INTEGER NM, NN, NNB, NOUT REAL THRESH * .. * .. Array Arguments .. LOGICAL DOTYPE( * ) INTEGER IWORK( * ), MVAL( * ), NBVAL( * ), NVAL( * ), $ NXVAL( * ) REAL S( * ), RWORK( * ) COMPLEX A( * ), COPYA( * ), TAU( * ), WORK( * ) * .. * * ===================================================================== * * .. Parameters .. INTEGER NTYPES PARAMETER ( NTYPES = 6 ) INTEGER NTESTS PARAMETER ( NTESTS = 3 ) REAL ONE, ZERO COMPLEX CZERO PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0, $ CZERO = ( 0.0E+0, 0.0E+0 ) ) * .. * .. Local Scalars .. CHARACTER*3 PATH INTEGER I, IHIGH, ILOW, IM, IMODE, IN, INB, INFO, $ ISTEP, K, LDA, LW, LWORK, M, MNMIN, MODE, N, $ NB, NERRS, NFAIL, NRUN, NX REAL EPS * .. * .. Local Arrays .. INTEGER ISEED( 4 ), ISEEDY( 4 ) REAL RESULT( NTESTS ) * .. * .. External Functions .. REAL CQPT01, CQRT11, CQRT12, SLAMCH EXTERNAL CQPT01, CQRT11, CQRT12, SLAMCH * .. * .. External Subroutines .. EXTERNAL ALAHD, ALASUM, CGEQP3, CLACPY, CLASET, CLATMS, $ ICOPY, SLAORD, XLAENV * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN * .. * .. Scalars in Common .. LOGICAL LERR, OK CHARACTER*32 SRNAMT INTEGER INFOT, IOUNIT * .. * .. Common blocks .. COMMON / INFOC / INFOT, IOUNIT, OK, LERR COMMON / SRNAMC / SRNAMT * .. * .. Data statements .. DATA ISEEDY / 1988, 1989, 1990, 1991 / * .. * .. Executable Statements .. * * Initialize constants and the random number seed. * PATH( 1: 1 ) = 'Complex precision' PATH( 2: 3 ) = 'Q3' NRUN = 0 NFAIL = 0 NERRS = 0 DO 10 I = 1, 4 ISEED( I ) = ISEEDY( I ) 10 CONTINUE EPS = SLAMCH( 'Epsilon' ) INFOT = 0 * DO 90 IM = 1, NM * * Do for each value of M in MVAL. * M = MVAL( IM ) LDA = MAX( 1, M ) * DO 80 IN = 1, NN * * Do for each value of N in NVAL. * N = NVAL( IN ) MNMIN = MIN( M, N ) LWORK = MAX( 1, M*MAX( M, N )+4*MNMIN+MAX( M, N ) ) * DO 70 IMODE = 1, NTYPES IF( .NOT.DOTYPE( IMODE ) ) $ GO TO 70 * * Do for each type of matrix * 1: zero matrix * 2: one small singular value * 3: geometric distribution of singular values * 4: first n/2 columns fixed * 5: last n/2 columns fixed * 6: every second column fixed * MODE = IMODE IF( IMODE.GT.3 ) $ MODE = 1 * * Generate test matrix of size m by n using * singular value distribution indicated by `mode'. * DO 20 I = 1, N IWORK( I ) = 0 20 CONTINUE IF( IMODE.EQ.1 ) THEN CALL CLASET( 'Full', M, N, CZERO, CZERO, COPYA, LDA ) DO 30 I = 1, MNMIN S( I ) = ZERO 30 CONTINUE ELSE CALL CLATMS( M, N, 'Uniform', ISEED, 'Nonsymm', S, $ MODE, ONE / EPS, ONE, M, N, 'No packing', $ COPYA, LDA, WORK, INFO ) IF( IMODE.GE.4 ) THEN IF( IMODE.EQ.4 ) THEN ILOW = 1 ISTEP = 1 IHIGH = MAX( 1, N / 2 ) ELSE IF( IMODE.EQ.5 ) THEN ILOW = MAX( 1, N / 2 ) ISTEP = 1 IHIGH = N ELSE IF( IMODE.EQ.6 ) THEN ILOW = 1 ISTEP = 2 IHIGH = N END IF DO 40 I = ILOW, IHIGH, ISTEP IWORK( I ) = 1 40 CONTINUE END IF CALL SLAORD( 'Decreasing', MNMIN, S, 1 ) END IF * DO 60 INB = 1, NNB * * Do for each pair of values (NB,NX) in NBVAL and NXVAL. * NB = NBVAL( INB ) CALL XLAENV( 1, NB ) NX = NXVAL( INB ) CALL XLAENV( 3, NX ) * * Save A and its singular values and a copy of * vector IWORK. * CALL CLACPY( 'All', M, N, COPYA, LDA, A, LDA ) CALL ICOPY( N, IWORK( 1 ), 1, IWORK( N+1 ), 1 ) * * Workspace needed. * LW = NB*( N+1 ) * SRNAMT = 'CGEQP3' CALL CGEQP3( M, N, A, LDA, IWORK( N+1 ), TAU, WORK, $ LW, RWORK, INFO ) * * Compute norm(svd(a) - svd(r)) * RESULT( 1 ) = CQRT12( M, N, A, LDA, S, WORK, $ LWORK, RWORK ) * * Compute norm( A*P - Q*R ) * RESULT( 2 ) = CQPT01( M, N, MNMIN, COPYA, A, LDA, TAU, $ IWORK( N+1 ), WORK, LWORK ) * * Compute Q'*Q * RESULT( 3 ) = CQRT11( M, MNMIN, A, LDA, TAU, WORK, $ LWORK ) * * Print information about the tests that did not pass * the threshold. * DO 50 K = 1, NTESTS IF( RESULT( K ).GE.THRESH ) THEN IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) $ CALL ALAHD( NOUT, PATH ) WRITE( NOUT, FMT = 9999 )'CGEQP3', M, N, NB, $ IMODE, K, RESULT( K ) NFAIL = NFAIL + 1 END IF 50 CONTINUE NRUN = NRUN + NTESTS * 60 CONTINUE 70 CONTINUE 80 CONTINUE 90 CONTINUE * * Print a summary of the results. * CALL ALASUM( PATH, NOUT, NFAIL, NRUN, NERRS ) * 9999 FORMAT( 1X, A, ' M =', I5, ', N =', I5, ', NB =', I4, ', type ', $ I2, ', test ', I2, ', ratio =', G12.5 ) * * End of CCHKQ3 * END