*> \brief \b CERRGT * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE CERRGT( PATH, NUNIT ) * * .. Scalar Arguments .. * CHARACTER*3 PATH * INTEGER NUNIT * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CERRGT tests the error exits for the COMPLEX tridiagonal *> routines. *> \endverbatim * * Arguments: * ========== * *> \param[in] PATH *> \verbatim *> PATH is CHARACTER*3 *> The LAPACK path name for the routines to be tested. *> \endverbatim *> *> \param[in] NUNIT *> \verbatim *> NUNIT is INTEGER *> The unit number for output. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date November 2011 * *> \ingroup complex_lin * * ===================================================================== SUBROUTINE CERRGT( PATH, NUNIT ) * * -- LAPACK test routine (version 3.4.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2011 * * .. Scalar Arguments .. CHARACTER*3 PATH INTEGER NUNIT * .. * * ===================================================================== * * .. Parameters .. INTEGER NMAX PARAMETER ( NMAX = 2 ) * .. * .. Local Scalars .. CHARACTER*2 C2 INTEGER I, INFO REAL ANORM, RCOND * .. * .. Local Arrays .. INTEGER IP( NMAX ) REAL D( NMAX ), DF( NMAX ), R1( NMAX ), R2( NMAX ), $ RW( NMAX ) COMPLEX B( NMAX ), DL( NMAX ), DLF( NMAX ), DU( NMAX ), $ DU2( NMAX ), DUF( NMAX ), E( NMAX ), $ EF( NMAX ), W( NMAX ), X( NMAX ) * .. * .. External Functions .. LOGICAL LSAMEN EXTERNAL LSAMEN * .. * .. External Subroutines .. EXTERNAL ALAESM, CGTCON, CGTRFS, CGTTRF, CGTTRS, CHKXER, $ CPTCON, CPTRFS, CPTTRF, CPTTRS * .. * .. Scalars in Common .. LOGICAL LERR, OK CHARACTER*32 SRNAMT INTEGER INFOT, NOUT * .. * .. Common blocks .. COMMON / INFOC / INFOT, NOUT, OK, LERR COMMON / SRNAMC / SRNAMT * .. * .. Executable Statements .. * NOUT = NUNIT WRITE( NOUT, FMT = * ) C2 = PATH( 2: 3 ) DO 10 I = 1, NMAX D( I ) = 1. E( I ) = 2. DL( I ) = 3. DU( I ) = 4. 10 CONTINUE ANORM = 1.0 OK = .TRUE. * IF( LSAMEN( 2, C2, 'GT' ) ) THEN * * Test error exits for the general tridiagonal routines. * * CGTTRF * SRNAMT = 'CGTTRF' INFOT = 1 CALL CGTTRF( -1, DL, E, DU, DU2, IP, INFO ) CALL CHKXER( 'CGTTRF', INFOT, NOUT, LERR, OK ) * * CGTTRS * SRNAMT = 'CGTTRS' INFOT = 1 CALL CGTTRS( '/', 0, 0, DL, E, DU, DU2, IP, X, 1, INFO ) CALL CHKXER( 'CGTTRS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CGTTRS( 'N', -1, 0, DL, E, DU, DU2, IP, X, 1, INFO ) CALL CHKXER( 'CGTTRS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CGTTRS( 'N', 0, -1, DL, E, DU, DU2, IP, X, 1, INFO ) CALL CHKXER( 'CGTTRS', INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CGTTRS( 'N', 2, 1, DL, E, DU, DU2, IP, X, 1, INFO ) CALL CHKXER( 'CGTTRS', INFOT, NOUT, LERR, OK ) * * CGTRFS * SRNAMT = 'CGTRFS' INFOT = 1 CALL CGTRFS( '/', 0, 0, DL, E, DU, DLF, EF, DUF, DU2, IP, B, 1, $ X, 1, R1, R2, W, RW, INFO ) CALL CHKXER( 'CGTRFS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CGTRFS( 'N', -1, 0, DL, E, DU, DLF, EF, DUF, DU2, IP, B, $ 1, X, 1, R1, R2, W, RW, INFO ) CALL CHKXER( 'CGTRFS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CGTRFS( 'N', 0, -1, DL, E, DU, DLF, EF, DUF, DU2, IP, B, $ 1, X, 1, R1, R2, W, RW, INFO ) CALL CHKXER( 'CGTRFS', INFOT, NOUT, LERR, OK ) INFOT = 13 CALL CGTRFS( 'N', 2, 1, DL, E, DU, DLF, EF, DUF, DU2, IP, B, 1, $ X, 2, R1, R2, W, RW, INFO ) CALL CHKXER( 'CGTRFS', INFOT, NOUT, LERR, OK ) INFOT = 15 CALL CGTRFS( 'N', 2, 1, DL, E, DU, DLF, EF, DUF, DU2, IP, B, 2, $ X, 1, R1, R2, W, RW, INFO ) CALL CHKXER( 'CGTRFS', INFOT, NOUT, LERR, OK ) * * CGTCON * SRNAMT = 'CGTCON' INFOT = 1 CALL CGTCON( '/', 0, DL, E, DU, DU2, IP, ANORM, RCOND, W, $ INFO ) CALL CHKXER( 'CGTCON', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CGTCON( 'I', -1, DL, E, DU, DU2, IP, ANORM, RCOND, W, $ INFO ) CALL CHKXER( 'CGTCON', INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CGTCON( 'I', 0, DL, E, DU, DU2, IP, -ANORM, RCOND, W, $ INFO ) CALL CHKXER( 'CGTCON', INFOT, NOUT, LERR, OK ) * ELSE IF( LSAMEN( 2, C2, 'PT' ) ) THEN * * Test error exits for the positive definite tridiagonal * routines. * * CPTTRF * SRNAMT = 'CPTTRF' INFOT = 1 CALL CPTTRF( -1, D, E, INFO ) CALL CHKXER( 'CPTTRF', INFOT, NOUT, LERR, OK ) * * CPTTRS * SRNAMT = 'CPTTRS' INFOT = 1 CALL CPTTRS( '/', 1, 0, D, E, X, 1, INFO ) CALL CHKXER( 'CPTTRS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CPTTRS( 'U', -1, 0, D, E, X, 1, INFO ) CALL CHKXER( 'CPTTRS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CPTTRS( 'U', 0, -1, D, E, X, 1, INFO ) CALL CHKXER( 'CPTTRS', INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CPTTRS( 'U', 2, 1, D, E, X, 1, INFO ) CALL CHKXER( 'CPTTRS', INFOT, NOUT, LERR, OK ) * * CPTRFS * SRNAMT = 'CPTRFS' INFOT = 1 CALL CPTRFS( '/', 1, 0, D, E, DF, EF, B, 1, X, 1, R1, R2, W, $ RW, INFO ) CALL CHKXER( 'CPTRFS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CPTRFS( 'U', -1, 0, D, E, DF, EF, B, 1, X, 1, R1, R2, W, $ RW, INFO ) CALL CHKXER( 'CPTRFS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CPTRFS( 'U', 0, -1, D, E, DF, EF, B, 1, X, 1, R1, R2, W, $ RW, INFO ) CALL CHKXER( 'CPTRFS', INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CPTRFS( 'U', 2, 1, D, E, DF, EF, B, 1, X, 2, R1, R2, W, $ RW, INFO ) CALL CHKXER( 'CPTRFS', INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CPTRFS( 'U', 2, 1, D, E, DF, EF, B, 2, X, 1, R1, R2, W, $ RW, INFO ) CALL CHKXER( 'CPTRFS', INFOT, NOUT, LERR, OK ) * * CPTCON * SRNAMT = 'CPTCON' INFOT = 1 CALL CPTCON( -1, D, E, ANORM, RCOND, RW, INFO ) CALL CHKXER( 'CPTCON', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CPTCON( 0, D, E, -ANORM, RCOND, RW, INFO ) CALL CHKXER( 'CPTCON', INFOT, NOUT, LERR, OK ) END IF * * Print a summary line. * CALL ALAESM( PATH, OK, NOUT ) * RETURN * * End of CERRGT * END