*> \brief \b CERRSYX * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE CERRSY( PATH, NUNIT ) * * .. Scalar Arguments .. * CHARACTER*3 PATH * INTEGER NUNIT * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CERRSY tests the error exits for the COMPLEX routines *> for symmetric indefinite matrices. *> *> Note that this file is used only when the XBLAS are available, *> otherwise cerrsy.f defines this subroutine. *> \endverbatim * * Arguments: * ========== * *> \param[in] PATH *> \verbatim *> PATH is CHARACTER*3 *> The LAPACK path name for the routines to be tested. *> \endverbatim *> *> \param[in] NUNIT *> \verbatim *> NUNIT is INTEGER *> The unit number for output. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date November 2015 * *> \ingroup complex_lin * * ===================================================================== SUBROUTINE CERRSY( PATH, NUNIT ) * * -- LAPACK test routine (version 3.6.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2015 * * .. Scalar Arguments .. CHARACTER*3 PATH INTEGER NUNIT * .. * * ===================================================================== * * .. Parameters .. INTEGER NMAX PARAMETER ( NMAX = 4 ) * .. * .. Local Scalars .. CHARACTER EQ CHARACTER*2 C2 INTEGER I, INFO, J, N_ERR_BNDS, NPARAMS REAL ANRM, RCOND, BERR * .. * .. Local Arrays .. INTEGER IP( NMAX ) REAL R( NMAX ), R1( NMAX ), R2( NMAX ), $ S( NMAX ), ERR_BNDS_N( NMAX, 3 ), $ ERR_BNDS_C( NMAX, 3 ), PARAMS( 1 ) COMPLEX A( NMAX, NMAX ), AF( NMAX, NMAX ), B( NMAX ), $ W( 2*NMAX ), X( NMAX ) * .. * .. External Functions .. LOGICAL LSAMEN EXTERNAL LSAMEN * .. * .. External Subroutines .. EXTERNAL ALAESM, CHKXER, CSPCON, CSPRFS, CSPTRF, CSPTRI, $ CSPTRS, CSYCON, CSYRFS, CSYTF2, CSYTRF, CSYTRI, $ CSYTRI2, CSYTRS, CSYRFSX, CSYCON_ROOK, $ CSYTF2_ROOK, CSYTRF_ROOK, CSYTRI_ROOK, $ CSYTRS_ROOK * .. * .. Scalars in Common .. LOGICAL LERR, OK CHARACTER*32 SRNAMT INTEGER INFOT, NOUT * .. * .. Common blocks .. COMMON / INFOC / INFOT, NOUT, OK, LERR COMMON / SRNAMC / SRNAMT * .. * .. Intrinsic Functions .. INTRINSIC CMPLX, REAL * .. * .. Executable Statements .. * NOUT = NUNIT WRITE( NOUT, FMT = * ) C2 = PATH( 2: 3 ) * * Set the variables to innocuous values. * DO 20 J = 1, NMAX DO 10 I = 1, NMAX A( I, J ) = CMPLX( 1. / REAL( I+J ), -1. / REAL( I+J ) ) AF( I, J ) = CMPLX( 1. / REAL( I+J ), -1. / REAL( I+J ) ) 10 CONTINUE B( J ) = 0. R1( J ) = 0. R2( J ) = 0. W( J ) = 0. X( J ) = 0. S( J ) = 0. IP( J ) = J 20 CONTINUE ANRM = 1.0 OK = .TRUE. * * Test error exits of the routines that use factorization * of a symmetric indefinite matrix with patrial * (Bunch-Kaufman) diagonal pivoting method. * IF( LSAMEN( 2, C2, 'SY' ) ) THEN * * CSYTRF * SRNAMT = 'CSYTRF' INFOT = 1 CALL CSYTRF( '/', 0, A, 1, IP, W, 1, INFO ) CALL CHKXER( 'CSYTRF', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CSYTRF( 'U', -1, A, 1, IP, W, 1, INFO ) CALL CHKXER( 'CSYTRF', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CSYTRF( 'U', 2, A, 1, IP, W, 4, INFO ) CALL CHKXER( 'CSYTRF', INFOT, NOUT, LERR, OK ) * * CSYTF2 * SRNAMT = 'CSYTF2' INFOT = 1 CALL CSYTF2( '/', 0, A, 1, IP, INFO ) CALL CHKXER( 'CSYTF2', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CSYTF2( 'U', -1, A, 1, IP, INFO ) CALL CHKXER( 'CSYTF2', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CSYTF2( 'U', 2, A, 1, IP, INFO ) CALL CHKXER( 'CSYTF2', INFOT, NOUT, LERR, OK ) * * CSYTRI * SRNAMT = 'CSYTRI' INFOT = 1 CALL CSYTRI( '/', 0, A, 1, IP, W, INFO ) CALL CHKXER( 'CSYTRI', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CSYTRI( 'U', -1, A, 1, IP, W, INFO ) CALL CHKXER( 'CSYTRI', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CSYTRI( 'U', 2, A, 1, IP, W, INFO ) CALL CHKXER( 'CSYTRI', INFOT, NOUT, LERR, OK ) * * CSYTRI2 * SRNAMT = 'CSYTRI2' INFOT = 1 CALL CSYTRI2( '/', 0, A, 1, IP, W, 1, INFO ) CALL CHKXER( 'CSYTRI2', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CSYTRI2( 'U', -1, A, 1, IP, W, 1, INFO ) CALL CHKXER( 'CSYTRI2', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CSYTRI2( 'U', 2, A, 1, IP, W, 1, INFO ) CALL CHKXER( 'CSYTRI2', INFOT, NOUT, LERR, OK ) * * CSYTRS * SRNAMT = 'CSYTRS' INFOT = 1 CALL CSYTRS( '/', 0, 0, A, 1, IP, B, 1, INFO ) CALL CHKXER( 'CSYTRS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CSYTRS( 'U', -1, 0, A, 1, IP, B, 1, INFO ) CALL CHKXER( 'CSYTRS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CSYTRS( 'U', 0, -1, A, 1, IP, B, 1, INFO ) CALL CHKXER( 'CSYTRS', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CSYTRS( 'U', 2, 1, A, 1, IP, B, 2, INFO ) CALL CHKXER( 'CSYTRS', INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CSYTRS( 'U', 2, 1, A, 2, IP, B, 1, INFO ) CALL CHKXER( 'CSYTRS', INFOT, NOUT, LERR, OK ) * * CSYRFS * SRNAMT = 'CSYRFS' INFOT = 1 CALL CSYRFS( '/', 0, 0, A, 1, AF, 1, IP, B, 1, X, 1, R1, R2, W, $ R, INFO ) CALL CHKXER( 'CSYRFS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CSYRFS( 'U', -1, 0, A, 1, AF, 1, IP, B, 1, X, 1, R1, R2, $ W, R, INFO ) CALL CHKXER( 'CSYRFS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CSYRFS( 'U', 0, -1, A, 1, AF, 1, IP, B, 1, X, 1, R1, R2, $ W, R, INFO ) CALL CHKXER( 'CSYRFS', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CSYRFS( 'U', 2, 1, A, 1, AF, 2, IP, B, 2, X, 2, R1, R2, W, $ R, INFO ) CALL CHKXER( 'CSYRFS', INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CSYRFS( 'U', 2, 1, A, 2, AF, 1, IP, B, 2, X, 2, R1, R2, W, $ R, INFO ) CALL CHKXER( 'CSYRFS', INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CSYRFS( 'U', 2, 1, A, 2, AF, 2, IP, B, 1, X, 2, R1, R2, W, $ R, INFO ) CALL CHKXER( 'CSYRFS', INFOT, NOUT, LERR, OK ) INFOT = 12 CALL CSYRFS( 'U', 2, 1, A, 2, AF, 2, IP, B, 2, X, 1, R1, R2, W, $ R, INFO ) CALL CHKXER( 'CSYRFS', INFOT, NOUT, LERR, OK ) * * CSYRFSX * N_ERR_BNDS = 3 NPARAMS = 0 SRNAMT = 'CSYRFSX' INFOT = 1 CALL CSYRFSX( '/', EQ, 0, 0, A, 1, AF, 1, IP, S, B, 1, X, 1, $ RCOND, BERR, N_ERR_BNDS, ERR_BNDS_N, ERR_BNDS_C, NPARAMS, $ PARAMS, W, R, INFO ) CALL CHKXER( 'CSYRFSX', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CSYRFSX( 'U', EQ, -1, 0, A, 1, AF, 1, IP, S, B, 1, X, 1, $ RCOND, BERR, N_ERR_BNDS, ERR_BNDS_N, ERR_BNDS_C, NPARAMS, $ PARAMS, W, R, INFO ) CALL CHKXER( 'CSYRFSX', INFOT, NOUT, LERR, OK ) EQ = 'N' INFOT = 3 CALL CSYRFSX( 'U', EQ, -1, 0, A, 1, AF, 1, IP, S, B, 1, X, 1, $ RCOND, BERR, N_ERR_BNDS, ERR_BNDS_N, ERR_BNDS_C, NPARAMS, $ PARAMS, W, R, INFO ) CALL CHKXER( 'CSYRFSX', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CSYRFSX( 'U', EQ, 0, -1, A, 1, AF, 1, IP, S, B, 1, X, 1, $ RCOND, BERR, N_ERR_BNDS, ERR_BNDS_N, ERR_BNDS_C, NPARAMS, $ PARAMS, W, R, INFO ) CALL CHKXER( 'CSYRFSX', INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CSYRFSX( 'U', EQ, 2, 1, A, 1, AF, 2, IP, S, B, 2, X, 2, $ RCOND, BERR, N_ERR_BNDS, ERR_BNDS_N, ERR_BNDS_C, NPARAMS, $ PARAMS, W, R, INFO ) CALL CHKXER( 'CSYRFSX', INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CSYRFSX( 'U', EQ, 2, 1, A, 2, AF, 1, IP, S, B, 2, X, 2, $ RCOND, BERR, N_ERR_BNDS, ERR_BNDS_N, ERR_BNDS_C, NPARAMS, $ PARAMS, W, R, INFO ) CALL CHKXER( 'CSYRFSX', INFOT, NOUT, LERR, OK ) INFOT = 12 CALL CSYRFSX( 'U', EQ, 2, 1, A, 2, AF, 2, IP, S, B, 1, X, 2, $ RCOND, BERR, N_ERR_BNDS, ERR_BNDS_N, ERR_BNDS_C, NPARAMS, $ PARAMS, W, R, INFO ) CALL CHKXER( 'CSYRFSX', INFOT, NOUT, LERR, OK ) INFOT = 14 CALL CSYRFSX( 'U', EQ, 2, 1, A, 2, AF, 2, IP, S, B, 2, X, 1, $ RCOND, BERR, N_ERR_BNDS, ERR_BNDS_N, ERR_BNDS_C, NPARAMS, $ PARAMS, W, R, INFO ) CALL CHKXER( 'CSYRFSX', INFOT, NOUT, LERR, OK ) * * CSYCON * SRNAMT = 'CSYCON' INFOT = 1 CALL CSYCON( '/', 0, A, 1, IP, ANRM, RCOND, W, INFO ) CALL CHKXER( 'CSYCON', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CSYCON( 'U', -1, A, 1, IP, ANRM, RCOND, W, INFO ) CALL CHKXER( 'CSYCON', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CSYCON( 'U', 2, A, 1, IP, ANRM, RCOND, W, INFO ) CALL CHKXER( 'CSYCON', INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CSYCON( 'U', 1, A, 1, IP, -ANRM, RCOND, W, INFO ) CALL CHKXER( 'CSYCON', INFOT, NOUT, LERR, OK ) * * Test error exits of the routines that use factorization * of a symmetric indefinite matrix with "rook" * (bounded Bunch-Kaufman) diagonal pivoting method. * ELSE IF( LSAMEN( 2, C2, 'SR' ) ) THEN * * CSYTRF_ROOK * SRNAMT = 'CSYTRF_ROOK' INFOT = 1 CALL CSYTRF_ROOK( '/', 0, A, 1, IP, W, 1, INFO ) CALL CHKXER( 'CSYTRF_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CSYTRF_ROOK( 'U', -1, A, 1, IP, W, 1, INFO ) CALL CHKXER( 'CSYTRF_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CSYTRF_ROOK( 'U', 2, A, 1, IP, W, 4, INFO ) CALL CHKXER( 'CSYTRF_ROOK', INFOT, NOUT, LERR, OK ) * * CSYTF2_ROOK * SRNAMT = 'CSYTF2_ROOK' INFOT = 1 CALL CSYTF2_ROOK( '/', 0, A, 1, IP, INFO ) CALL CHKXER( 'CSYTF2_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CSYTF2_ROOK( 'U', -1, A, 1, IP, INFO ) CALL CHKXER( 'CSYTF2_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CSYTF2_ROOK( 'U', 2, A, 1, IP, INFO ) CALL CHKXER( 'CSYTF2_ROOK', INFOT, NOUT, LERR, OK ) * * CSYTRI_ROOK * SRNAMT = 'CSYTRI_ROOK' INFOT = 1 CALL CSYTRI_ROOK( '/', 0, A, 1, IP, W, INFO ) CALL CHKXER( 'CSYTRI_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CSYTRI_ROOK( 'U', -1, A, 1, IP, W, INFO ) CALL CHKXER( 'CSYTRI_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CSYTRI_ROOK( 'U', 2, A, 1, IP, W, INFO ) CALL CHKXER( 'CSYTRI_ROOK', INFOT, NOUT, LERR, OK ) * * CSYTRS_ROOK * SRNAMT = 'CSYTRS_ROOK' INFOT = 1 CALL CSYTRS_ROOK( '/', 0, 0, A, 1, IP, B, 1, INFO ) CALL CHKXER( 'CSYTRS_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CSYTRS_ROOK( 'U', -1, 0, A, 1, IP, B, 1, INFO ) CALL CHKXER( 'CSYTRS_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CSYTRS_ROOK( 'U', 0, -1, A, 1, IP, B, 1, INFO ) CALL CHKXER( 'CSYTRS_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CSYTRS_ROOK( 'U', 2, 1, A, 1, IP, B, 2, INFO ) CALL CHKXER( 'CSYTRS_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CSYTRS_ROOK( 'U', 2, 1, A, 2, IP, B, 1, INFO ) CALL CHKXER( 'CSYTRS_ROOK', INFOT, NOUT, LERR, OK ) * * CSYCON_ROOK * SRNAMT = 'CSYCON_ROOK' INFOT = 1 CALL CSYCON_ROOK( '/', 0, A, 1, IP, ANRM, RCOND, W, INFO ) CALL CHKXER( 'CSYCON_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CSYCON_ROOK( 'U', -1, A, 1, IP, ANRM, RCOND, W, INFO ) CALL CHKXER( 'CSYCON_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CSYCON_ROOK( 'U', 2, A, 1, IP, ANRM, RCOND, W, INFO ) CALL CHKXER( 'CSYCON_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CSYCON_ROOK( 'U', 1, A, 1, IP, -ANRM, RCOND, W, INFO ) CALL CHKXER( 'CSYCON_ROOK', INFOT, NOUT, LERR, OK ) * * Test error exits of the routines that use factorization * of a symmetric indefinite packed matrix with patrial * (Bunch-Kaufman) diagonal pivoting method. * ELSE IF( LSAMEN( 2, C2, 'SP' ) ) THEN * * CSPTRF * SRNAMT = 'CSPTRF' INFOT = 1 CALL CSPTRF( '/', 0, A, IP, INFO ) CALL CHKXER( 'CSPTRF', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CSPTRF( 'U', -1, A, IP, INFO ) CALL CHKXER( 'CSPTRF', INFOT, NOUT, LERR, OK ) * * CSPTRI * SRNAMT = 'CSPTRI' INFOT = 1 CALL CSPTRI( '/', 0, A, IP, W, INFO ) CALL CHKXER( 'CSPTRI', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CSPTRI( 'U', -1, A, IP, W, INFO ) CALL CHKXER( 'CSPTRI', INFOT, NOUT, LERR, OK ) * * CSPTRS * SRNAMT = 'CSPTRS' INFOT = 1 CALL CSPTRS( '/', 0, 0, A, IP, B, 1, INFO ) CALL CHKXER( 'CSPTRS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CSPTRS( 'U', -1, 0, A, IP, B, 1, INFO ) CALL CHKXER( 'CSPTRS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CSPTRS( 'U', 0, -1, A, IP, B, 1, INFO ) CALL CHKXER( 'CSPTRS', INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CSPTRS( 'U', 2, 1, A, IP, B, 1, INFO ) CALL CHKXER( 'CSPTRS', INFOT, NOUT, LERR, OK ) * * CSPRFS * SRNAMT = 'CSPRFS' INFOT = 1 CALL CSPRFS( '/', 0, 0, A, AF, IP, B, 1, X, 1, R1, R2, W, R, $ INFO ) CALL CHKXER( 'CSPRFS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CSPRFS( 'U', -1, 0, A, AF, IP, B, 1, X, 1, R1, R2, W, R, $ INFO ) CALL CHKXER( 'CSPRFS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CSPRFS( 'U', 0, -1, A, AF, IP, B, 1, X, 1, R1, R2, W, R, $ INFO ) CALL CHKXER( 'CSPRFS', INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CSPRFS( 'U', 2, 1, A, AF, IP, B, 1, X, 2, R1, R2, W, R, $ INFO ) CALL CHKXER( 'CSPRFS', INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CSPRFS( 'U', 2, 1, A, AF, IP, B, 2, X, 1, R1, R2, W, R, $ INFO ) CALL CHKXER( 'CSPRFS', INFOT, NOUT, LERR, OK ) * * CSPCON * SRNAMT = 'CSPCON' INFOT = 1 CALL CSPCON( '/', 0, A, IP, ANRM, RCOND, W, INFO ) CALL CHKXER( 'CSPCON', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CSPCON( 'U', -1, A, IP, ANRM, RCOND, W, INFO ) CALL CHKXER( 'CSPCON', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CSPCON( 'U', 1, A, IP, -ANRM, RCOND, W, INFO ) CALL CHKXER( 'CSPCON', INFOT, NOUT, LERR, OK ) END IF * * Print a summary line. * CALL ALAESM( PATH, OK, NOUT ) * RETURN * * End of CERRSY * END