*> \brief \b STPT03 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE STPT03( UPLO, TRANS, DIAG, N, NRHS, AP, SCALE, CNORM, * TSCAL, X, LDX, B, LDB, WORK, RESID ) * * .. Scalar Arguments .. * CHARACTER DIAG, TRANS, UPLO * INTEGER LDB, LDX, N, NRHS * REAL RESID, SCALE, TSCAL * .. * .. Array Arguments .. * REAL AP( * ), B( LDB, * ), CNORM( * ), WORK( * ), * $ X( LDX, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> STPT03 computes the residual for the solution to a scaled triangular *> system of equations A*x = s*b or A'*x = s*b when the triangular *> matrix A is stored in packed format. Here A' is the transpose of A, *> s is a scalar, and x and b are N by NRHS matrices. The test ratio is *> the maximum over the number of right hand sides of *> norm(s*b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ), *> where op(A) denotes A or A' and EPS is the machine epsilon. *> \endverbatim * * Arguments: * ========== * *> \param[in] UPLO *> \verbatim *> UPLO is CHARACTER*1 *> Specifies whether the matrix A is upper or lower triangular. *> = 'U': Upper triangular *> = 'L': Lower triangular *> \endverbatim *> *> \param[in] TRANS *> \verbatim *> TRANS is CHARACTER*1 *> Specifies the operation applied to A. *> = 'N': A *x = s*b (No transpose) *> = 'T': A'*x = s*b (Transpose) *> = 'C': A'*x = s*b (Conjugate transpose = Transpose) *> \endverbatim *> *> \param[in] DIAG *> \verbatim *> DIAG is CHARACTER*1 *> Specifies whether or not the matrix A is unit triangular. *> = 'N': Non-unit triangular *> = 'U': Unit triangular *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrix A. N >= 0. *> \endverbatim *> *> \param[in] NRHS *> \verbatim *> NRHS is INTEGER *> The number of right hand sides, i.e., the number of columns *> of the matrices X and B. NRHS >= 0. *> \endverbatim *> *> \param[in] AP *> \verbatim *> AP is REAL array, dimension (N*(N+1)/2) *> The upper or lower triangular matrix A, packed columnwise in *> a linear array. The j-th column of A is stored in the array *> AP as follows: *> if UPLO = 'U', AP((j-1)*j/2 + i) = A(i,j) for 1<=i<=j; *> if UPLO = 'L', *> AP((j-1)*(n-j) + j*(j+1)/2 + i-j) = A(i,j) for j<=i<=n. *> \endverbatim *> *> \param[in] SCALE *> \verbatim *> SCALE is REAL *> The scaling factor s used in solving the triangular system. *> \endverbatim *> *> \param[in] CNORM *> \verbatim *> CNORM is REAL array, dimension (N) *> The 1-norms of the columns of A, not counting the diagonal. *> \endverbatim *> *> \param[in] TSCAL *> \verbatim *> TSCAL is REAL *> The scaling factor used in computing the 1-norms in CNORM. *> CNORM actually contains the column norms of TSCAL*A. *> \endverbatim *> *> \param[in] X *> \verbatim *> X is REAL array, dimension (LDX,NRHS) *> The computed solution vectors for the system of linear *> equations. *> \endverbatim *> *> \param[in] LDX *> \verbatim *> LDX is INTEGER *> The leading dimension of the array X. LDX >= max(1,N). *> \endverbatim *> *> \param[in] B *> \verbatim *> B is REAL array, dimension (LDB,NRHS) *> The right hand side vectors for the system of linear *> equations. *> \endverbatim *> *> \param[in] LDB *> \verbatim *> LDB is INTEGER *> The leading dimension of the array B. LDB >= max(1,N). *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is REAL array, dimension (N) *> \endverbatim *> *> \param[out] RESID *> \verbatim *> RESID is REAL *> The maximum over the number of right hand sides of *> norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ). *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date November 2011 * *> \ingroup single_lin * * ===================================================================== SUBROUTINE STPT03( UPLO, TRANS, DIAG, N, NRHS, AP, SCALE, CNORM, $ TSCAL, X, LDX, B, LDB, WORK, RESID ) * * -- LAPACK test routine (version 3.4.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2011 * * .. Scalar Arguments .. CHARACTER DIAG, TRANS, UPLO INTEGER LDB, LDX, N, NRHS REAL RESID, SCALE, TSCAL * .. * .. Array Arguments .. REAL AP( * ), B( LDB, * ), CNORM( * ), WORK( * ), $ X( LDX, * ) * .. * * ===================================================================== * * .. Parameters .. REAL ONE, ZERO PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) * .. * .. Local Scalars .. INTEGER IX, J, JJ REAL BIGNUM, EPS, ERR, SMLNUM, TNORM, XNORM, XSCAL * .. * .. External Functions .. LOGICAL LSAME INTEGER ISAMAX REAL SLAMCH EXTERNAL LSAME, ISAMAX, SLAMCH * .. * .. External Subroutines .. EXTERNAL SAXPY, SCOPY, SLABAD, SSCAL, STPMV * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX, REAL * .. * .. Executable Statements .. * * Quick exit if N = 0. * IF( N.LE.0 .OR. NRHS.LE.0 ) THEN RESID = ZERO RETURN END IF EPS = SLAMCH( 'Epsilon' ) SMLNUM = SLAMCH( 'Safe minimum' ) BIGNUM = ONE / SMLNUM CALL SLABAD( SMLNUM, BIGNUM ) * * Compute the norm of the triangular matrix A using the column * norms already computed by SLATPS. * TNORM = ZERO IF( LSAME( DIAG, 'N' ) ) THEN IF( LSAME( UPLO, 'U' ) ) THEN JJ = 1 DO 10 J = 1, N TNORM = MAX( TNORM, TSCAL*ABS( AP( JJ ) )+CNORM( J ) ) JJ = JJ + J + 1 10 CONTINUE ELSE JJ = 1 DO 20 J = 1, N TNORM = MAX( TNORM, TSCAL*ABS( AP( JJ ) )+CNORM( J ) ) JJ = JJ + N - J + 1 20 CONTINUE END IF ELSE DO 30 J = 1, N TNORM = MAX( TNORM, TSCAL+CNORM( J ) ) 30 CONTINUE END IF * * Compute the maximum over the number of right hand sides of * norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ). * RESID = ZERO DO 40 J = 1, NRHS CALL SCOPY( N, X( 1, J ), 1, WORK, 1 ) IX = ISAMAX( N, WORK, 1 ) XNORM = MAX( ONE, ABS( X( IX, J ) ) ) XSCAL = ( ONE / XNORM ) / REAL( N ) CALL SSCAL( N, XSCAL, WORK, 1 ) CALL STPMV( UPLO, TRANS, DIAG, N, AP, WORK, 1 ) CALL SAXPY( N, -SCALE*XSCAL, B( 1, J ), 1, WORK, 1 ) IX = ISAMAX( N, WORK, 1 ) ERR = TSCAL*ABS( WORK( IX ) ) IX = ISAMAX( N, X( 1, J ), 1 ) XNORM = ABS( X( IX, J ) ) IF( ERR*SMLNUM.LE.XNORM ) THEN IF( XNORM.GT.ZERO ) $ ERR = ERR / XNORM ELSE IF( ERR.GT.ZERO ) $ ERR = ONE / EPS END IF IF( ERR*SMLNUM.LE.TNORM ) THEN IF( TNORM.GT.ZERO ) $ ERR = ERR / TNORM ELSE IF( ERR.GT.ZERO ) $ ERR = ONE / EPS END IF RESID = MAX( RESID, ERR ) 40 CONTINUE * RETURN * * End of STPT03 * END