*> \brief \b ZDRVSY_ROOK * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE ZDRVSY_ROOK( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, * NMAX, A, AFAC, AINV, B, X, XACT, WORK, RWORK, * IWORK, NOUT ) * * .. Scalar Arguments .. * LOGICAL TSTERR * INTEGER NMAX, NN, NOUT, NRHS * DOUBLE PRECISION THRESH * .. * .. Array Arguments .. * LOGICAL DOTYPE( * ) * INTEGER IWORK( * ), NVAL( * ) * DOUBLE PRECISION RWORK( * ) * COMPLEX*16 A( * ), AFAC( * ), AINV( * ), B( * ), * $ WORK( * ), X( * ), XACT( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ZDRVSY_ROOK tests the driver routines ZSYSV_ROOK. *> \endverbatim * * Arguments: * ========== * *> \param[in] DOTYPE *> \verbatim *> DOTYPE is LOGICAL array, dimension (NTYPES) *> The matrix types to be used for testing. Matrices of type j *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. *> \endverbatim *> *> \param[in] NN *> \verbatim *> NN is INTEGER *> The number of values of N contained in the vector NVAL. *> \endverbatim *> *> \param[in] NVAL *> \verbatim *> NVAL is INTEGER array, dimension (NN) *> The values of the matrix dimension N. *> \endverbatim *> *> \param[in] NRHS *> \verbatim *> NRHS is INTEGER *> The number of right hand side vectors to be generated for *> each linear system. *> \endverbatim *> *> \param[in] THRESH *> \verbatim *> THRESH is DOUBLE PRECISION *> The threshold value for the test ratios. A result is *> included in the output file if RESULT >= THRESH. To have *> every test ratio printed, use THRESH = 0. *> \endverbatim *> *> \param[in] TSTERR *> \verbatim *> TSTERR is LOGICAL *> Flag that indicates whether error exits are to be tested. *> \endverbatim *> *> \param[in] NMAX *> \verbatim *> NMAX is INTEGER *> The maximum value permitted for N, used in dimensioning the *> work arrays. *> \endverbatim *> *> \param[out] A *> \verbatim *> A is COMPLEX*16 array, dimension (NMAX*NMAX) *> \endverbatim *> *> \param[out] AFAC *> \verbatim *> AFAC is COMPLEX*16 array, dimension (NMAX*NMAX) *> \endverbatim *> *> \param[out] AINV *> \verbatim *> AINV is COMPLEX*16 array, dimension (NMAX*NMAX) *> \endverbatim *> *> \param[out] B *> \verbatim *> B is COMPLEX*16 array, dimension (NMAX*NRHS) *> \endverbatim *> *> \param[out] X *> \verbatim *> X is COMPLEX*16 array, dimension (NMAX*NRHS) *> \endverbatim *> *> \param[out] XACT *> \verbatim *> XACT is COMPLEX*16 array, dimension (NMAX*NRHS) *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX*16 array, dimension (NMAX*max(2,NRHS)) *> \endverbatim *> *> \param[out] RWORK *> \verbatim *> RWORK is DOUBLE PRECISION array, dimension (NMAX+2*NRHS) *> \endverbatim *> *> \param[out] IWORK *> \verbatim *> IWORK is INTEGER array, dimension (NMAX) *> \endverbatim *> *> \param[in] NOUT *> \verbatim *> NOUT is INTEGER *> The unit number for output. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date November 2013 * *> \ingroup complex16_lin * * ===================================================================== SUBROUTINE ZDRVSY_ROOK( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, $ NMAX, A, AFAC, AINV, B, X, XACT, WORK, $ RWORK, IWORK, NOUT ) * * -- LAPACK test routine (version 3.5.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2013 * * .. Scalar Arguments .. LOGICAL TSTERR INTEGER NMAX, NN, NOUT, NRHS DOUBLE PRECISION THRESH * .. * .. Array Arguments .. LOGICAL DOTYPE( * ) INTEGER IWORK( * ), NVAL( * ) DOUBLE PRECISION RWORK( * ) COMPLEX*16 A( * ), AFAC( * ), AINV( * ), B( * ), $ WORK( * ), X( * ), XACT( * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ONE, ZERO PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) INTEGER NTYPES, NTESTS PARAMETER ( NTYPES = 11, NTESTS = 3 ) INTEGER NFACT PARAMETER ( NFACT = 2 ) * .. * .. Local Scalars .. LOGICAL ZEROT CHARACTER DIST, FACT, TYPE, UPLO, XTYPE CHARACTER*3 MATPATH, PATH INTEGER I, I1, I2, IFACT, IMAT, IN, INFO, IOFF, IUPLO, $ IZERO, J, K, KL, KU, LDA, LWORK, MODE, N, $ NB, NBMIN, NERRS, NFAIL, NIMAT, NRUN, NT DOUBLE PRECISION AINVNM, ANORM, CNDNUM, RCONDC * .. * .. Local Arrays .. CHARACTER FACTS( NFACT ), UPLOS( 2 ) INTEGER ISEED( 4 ), ISEEDY( 4 ) DOUBLE PRECISION RESULT( NTESTS ) * .. * .. External Functions .. DOUBLE PRECISION ZLANSY EXTERNAL ZLANSY * .. * .. External Subroutines .. EXTERNAL ALADHD, ALAERH, ALASVM, XLAENV, ZERRVX, ZGET04, $ ZLACPY, ZLARHS, ZLASET, ZLATB4, ZLATMS, ZLATSY, $ ZPOT05, ZSYSV_ROOK, ZSYT01_ROOK, ZSYT02, $ ZSYTRF_ROOK, ZSYTRI_ROOK * .. * .. Scalars in Common .. LOGICAL LERR, OK CHARACTER*32 SRNAMT INTEGER INFOT, NUNIT * .. * .. Common blocks .. COMMON / INFOC / INFOT, NUNIT, OK, LERR COMMON / SRNAMC / SRNAMT * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN * .. * .. Data statements .. DATA ISEEDY / 1988, 1989, 1990, 1991 / DATA UPLOS / 'U', 'L' / , FACTS / 'F', 'N' / * .. * .. Executable Statements .. * * Initialize constants and the random number seed. * * Test path * PATH( 1: 1 ) = 'Zomplex precision' PATH( 2: 3 ) = 'SR' * * Path to generate matrices * MATPATH( 1: 1 ) = 'Zomplex precision' MATPATH( 2: 3 ) = 'SY' * NRUN = 0 NFAIL = 0 NERRS = 0 DO 10 I = 1, 4 ISEED( I ) = ISEEDY( I ) 10 CONTINUE LWORK = MAX( 2*NMAX, NMAX*NRHS ) * * Test the error exits * IF( TSTERR ) $ CALL ZERRVX( PATH, NOUT ) INFOT = 0 * * Set the block size and minimum block size for which the block * routine should be used, which will be later returned by ILAENV. * NB = 1 NBMIN = 2 CALL XLAENV( 1, NB ) CALL XLAENV( 2, NBMIN ) * * Do for each value of N in NVAL * DO 180 IN = 1, NN N = NVAL( IN ) LDA = MAX( N, 1 ) XTYPE = 'N' NIMAT = NTYPES IF( N.LE.0 ) $ NIMAT = 1 * DO 170 IMAT = 1, NIMAT * * Do the tests only if DOTYPE( IMAT ) is true. * IF( .NOT.DOTYPE( IMAT ) ) $ GO TO 170 * * Skip types 3, 4, 5, or 6 if the matrix size is too small. * ZEROT = IMAT.GE.3 .AND. IMAT.LE.6 IF( ZEROT .AND. N.LT.IMAT-2 ) $ GO TO 170 * * Do first for UPLO = 'U', then for UPLO = 'L' * DO 160 IUPLO = 1, 2 UPLO = UPLOS( IUPLO ) * IF( IMAT.NE.NTYPES ) THEN * * Begin generate the test matrix A. * * Set up parameters with ZLATB4 for the matrix generator * based on the type of matrix to be generated. * CALL ZLATB4( MATPATH, IMAT, N, N, TYPE, KL, KU, ANORM, $ MODE, CNDNUM, DIST ) * * Generate a matrix with ZLATMS. * SRNAMT = 'ZLATMS' CALL ZLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE, $ CNDNUM, ANORM, KL, KU, UPLO, A, LDA, $ WORK, INFO ) * * Check error code from DLATMS and handle error. * IF( INFO.NE.0 ) THEN CALL ALAERH( PATH, 'ZLATMS', INFO, 0, UPLO, N, N, $ -1, -1, -1, IMAT, NFAIL, NERRS, NOUT ) GO TO 160 END IF * * For types 3-6, zero one or more rows and columns of * the matrix to test that INFO is returned correctly. * IF( ZEROT ) THEN IF( IMAT.EQ.3 ) THEN IZERO = 1 ELSE IF( IMAT.EQ.4 ) THEN IZERO = N ELSE IZERO = N / 2 + 1 END IF * IF( IMAT.LT.6 ) THEN * * Set row and column IZERO to zero. * IF( IUPLO.EQ.1 ) THEN IOFF = ( IZERO-1 )*LDA DO 20 I = 1, IZERO - 1 A( IOFF+I ) = ZERO 20 CONTINUE IOFF = IOFF + IZERO DO 30 I = IZERO, N A( IOFF ) = ZERO IOFF = IOFF + LDA 30 CONTINUE ELSE IOFF = IZERO DO 40 I = 1, IZERO - 1 A( IOFF ) = ZERO IOFF = IOFF + LDA 40 CONTINUE IOFF = IOFF - IZERO DO 50 I = IZERO, N A( IOFF+I ) = ZERO 50 CONTINUE END IF ELSE IF( IUPLO.EQ.1 ) THEN * * Set the first IZERO rows and columns to zero. * IOFF = 0 DO 70 J = 1, N I2 = MIN( J, IZERO ) DO 60 I = 1, I2 A( IOFF+I ) = ZERO 60 CONTINUE IOFF = IOFF + LDA 70 CONTINUE ELSE * * Set the first IZERO rows and columns to zero. * IOFF = 0 DO 90 J = 1, N I1 = MAX( J, IZERO ) DO 80 I = I1, N A( IOFF+I ) = ZERO 80 CONTINUE IOFF = IOFF + LDA 90 CONTINUE END IF END IF ELSE IZERO = 0 END IF ELSE * * IMAT = NTYPES: Use a special block diagonal matrix to * test alternate code for the 2-by-2 blocks. * CALL ZLATSY( UPLO, N, A, LDA, ISEED ) END IF * DO 150 IFACT = 1, NFACT * * Do first for FACT = 'F', then for other values. * FACT = FACTS( IFACT ) * * Compute the condition number for comparison with * the value returned by ZSYSVX_ROOK. * IF( ZEROT ) THEN IF( IFACT.EQ.1 ) $ GO TO 150 RCONDC = ZERO * ELSE IF( IFACT.EQ.1 ) THEN * * Compute the 1-norm of A. * ANORM = ZLANSY( '1', UPLO, N, A, LDA, RWORK ) * * Factor the matrix A. * CALL ZLACPY( UPLO, N, N, A, LDA, AFAC, LDA ) CALL ZSYTRF_ROOK( UPLO, N, AFAC, LDA, IWORK, WORK, $ LWORK, INFO ) * * Compute inv(A) and take its norm. * CALL ZLACPY( UPLO, N, N, AFAC, LDA, AINV, LDA ) LWORK = (N+NB+1)*(NB+3) CALL ZSYTRI_ROOK( UPLO, N, AINV, LDA, IWORK, $ WORK, INFO ) AINVNM = ZLANSY( '1', UPLO, N, AINV, LDA, RWORK ) * * Compute the 1-norm condition number of A. * IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN RCONDC = ONE ELSE RCONDC = ( ONE / ANORM ) / AINVNM END IF END IF * * Form an exact solution and set the right hand side. * SRNAMT = 'ZLARHS' CALL ZLARHS( MATPATH, XTYPE, UPLO, ' ', N, N, KL, KU, $ NRHS, A, LDA, XACT, LDA, B, LDA, ISEED, $ INFO ) XTYPE = 'C' * * --- Test ZSYSV_ROOK --- * IF( IFACT.EQ.2 ) THEN CALL ZLACPY( UPLO, N, N, A, LDA, AFAC, LDA ) CALL ZLACPY( 'Full', N, NRHS, B, LDA, X, LDA ) * * Factor the matrix and solve the system using * ZSYSV_ROOK. * SRNAMT = 'ZSYSV_ROOK' CALL ZSYSV_ROOK( UPLO, N, NRHS, AFAC, LDA, IWORK, $ X, LDA, WORK, LWORK, INFO ) * * Adjust the expected value of INFO to account for * pivoting. * K = IZERO IF( K.GT.0 ) THEN 100 CONTINUE IF( IWORK( K ).LT.0 ) THEN IF( IWORK( K ).NE.-K ) THEN K = -IWORK( K ) GO TO 100 END IF ELSE IF( IWORK( K ).NE.K ) THEN K = IWORK( K ) GO TO 100 END IF END IF * * Check error code from ZSYSV_ROOK and handle error. * IF( INFO.NE.K ) THEN CALL ALAERH( PATH, 'ZSYSV_ROOK', INFO, K, UPLO, $ N, N, -1, -1, NRHS, IMAT, NFAIL, $ NERRS, NOUT ) GO TO 120 ELSE IF( INFO.NE.0 ) THEN GO TO 120 END IF * *+ TEST 1 Reconstruct matrix from factors and compute * residual. * CALL ZSYT01_ROOK( UPLO, N, A, LDA, AFAC, LDA, $ IWORK, AINV, LDA, RWORK, $ RESULT( 1 ) ) * *+ TEST 2 Compute residual of the computed solution. * CALL ZLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA ) CALL ZSYT02( UPLO, N, NRHS, A, LDA, X, LDA, WORK, $ LDA, RWORK, RESULT( 2 ) ) * *+ TEST 3 * Check solution from generated exact solution. * CALL ZGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC, $ RESULT( 3 ) ) NT = 3 * * Print information about the tests that did not pass * the threshold. * DO 110 K = 1, NT IF( RESULT( K ).GE.THRESH ) THEN IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) $ CALL ALADHD( NOUT, PATH ) WRITE( NOUT, FMT = 9999 )'ZSYSV_ROOK', UPLO, $ N, IMAT, K, RESULT( K ) NFAIL = NFAIL + 1 END IF 110 CONTINUE NRUN = NRUN + NT 120 CONTINUE END IF * 150 CONTINUE * 160 CONTINUE 170 CONTINUE 180 CONTINUE * * Print a summary of the results. * CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS ) * 9999 FORMAT( 1X, A, ', UPLO=''', A1, ''', N =', I5, ', type ', I2, $ ', test ', I2, ', ratio =', G12.5 ) RETURN * * End of ZDRVSY_ROOK * END