*> \brief \b ZERRHE * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE ZERRHE( PATH, NUNIT ) * * .. Scalar Arguments .. * CHARACTER*3 PATH * INTEGER NUNIT * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ZERRHE tests the error exits for the COMPLEX*16 routines *> for Hermitian indefinite matrices. *> \endverbatim * * Arguments: * ========== * *> \param[in] PATH *> \verbatim *> PATH is CHARACTER*3 *> The LAPACK path name for the routines to be tested. *> \endverbatim *> *> \param[in] NUNIT *> \verbatim *> NUNIT is INTEGER *> The unit number for output. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date November 2013 * *> \ingroup complex16_lin * * ===================================================================== SUBROUTINE ZERRHE( PATH, NUNIT ) * * -- LAPACK test routine (version 3.5.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2013 * * .. Scalar Arguments .. CHARACTER*3 PATH INTEGER NUNIT * .. * * ===================================================================== * * * .. Parameters .. INTEGER NMAX PARAMETER ( NMAX = 4 ) * .. * .. Local Scalars .. CHARACTER*2 C2 INTEGER I, INFO, J DOUBLE PRECISION ANRM, RCOND * .. * .. Local Arrays .. INTEGER IP( NMAX ) DOUBLE PRECISION R( NMAX ), R1( NMAX ), R2( NMAX ) COMPLEX*16 A( NMAX, NMAX ), AF( NMAX, NMAX ), B( NMAX ), $ W( 2*NMAX ), X( NMAX ) * .. * .. External Functions .. LOGICAL LSAMEN EXTERNAL LSAMEN * .. * .. External Subroutines .. EXTERNAL ALAESM, CHKXER, ZHECON, ZHECON_ROOK, ZHERFS, $ ZHETF2, ZHETF2_ROOK, ZHETRF, ZHETRF_ROOK, $ ZHETRI, ZHETRI_ROOK, ZHETRI2, ZHETRS, $ ZHETRS_ROOK, ZHPCON, ZHPRFS, ZHPTRF, ZHPTRI, $ ZHPTRS * .. * .. Scalars in Common .. LOGICAL LERR, OK CHARACTER*32 SRNAMT INTEGER INFOT, NOUT * .. * .. Common blocks .. COMMON / INFOC / INFOT, NOUT, OK, LERR COMMON / SRNAMC / SRNAMT * .. * .. Intrinsic Functions .. INTRINSIC DBLE, DCMPLX * .. * .. Executable Statements .. * NOUT = NUNIT WRITE( NOUT, FMT = * ) C2 = PATH( 2: 3 ) * * Set the variables to innocuous values. * DO 20 J = 1, NMAX DO 10 I = 1, NMAX A( I, J ) = DCMPLX( 1.D0 / DBLE( I+J ), $ -1.D0 / DBLE( I+J ) ) AF( I, J ) = DCMPLX( 1.D0 / DBLE( I+J ), $ -1.D0 / DBLE( I+J ) ) 10 CONTINUE B( J ) = 0.D0 R1( J ) = 0.D0 R2( J ) = 0.D0 W( J ) = 0.D0 X( J ) = 0.D0 IP( J ) = J 20 CONTINUE ANRM = 1.0D0 OK = .TRUE. * * Test error exits of the routines that use factorization * of a Hermitian indefinite matrix with patrial * (Bunch-Kaufman) diagonal pivoting method. * IF( LSAMEN( 2, C2, 'HE' ) ) THEN * * ZHETRF * SRNAMT = 'ZHETRF' INFOT = 1 CALL ZHETRF( '/', 0, A, 1, IP, W, 1, INFO ) CALL CHKXER( 'ZHETRF', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZHETRF( 'U', -1, A, 1, IP, W, 1, INFO ) CALL CHKXER( 'ZHETRF', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZHETRF( 'U', 2, A, 1, IP, W, 4, INFO ) CALL CHKXER( 'ZHETRF', INFOT, NOUT, LERR, OK ) * * ZHETF2 * SRNAMT = 'ZHETF2' INFOT = 1 CALL ZHETF2( '/', 0, A, 1, IP, INFO ) CALL CHKXER( 'ZHETF2', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZHETF2( 'U', -1, A, 1, IP, INFO ) CALL CHKXER( 'ZHETF2', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZHETF2( 'U', 2, A, 1, IP, INFO ) CALL CHKXER( 'ZHETF2', INFOT, NOUT, LERR, OK ) * * ZHETRI * SRNAMT = 'ZHETRI' INFOT = 1 CALL ZHETRI( '/', 0, A, 1, IP, W, INFO ) CALL CHKXER( 'ZHETRI', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZHETRI( 'U', -1, A, 1, IP, W, INFO ) CALL CHKXER( 'ZHETRI', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZHETRI( 'U', 2, A, 1, IP, W, INFO ) CALL CHKXER( 'ZHETRI', INFOT, NOUT, LERR, OK ) * * ZHETRI2 * SRNAMT = 'ZHETRI2' INFOT = 1 CALL ZHETRI2( '/', 0, A, 1, IP, W, 1, INFO ) CALL CHKXER( 'ZHETRI2', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZHETRI2( 'U', -1, A, 1, IP, W, 1, INFO ) CALL CHKXER( 'ZHETRI2', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZHETRI2( 'U', 2, A, 1, IP, W, 1, INFO ) CALL CHKXER( 'ZHETRI2', INFOT, NOUT, LERR, OK ) * * ZHETRS * SRNAMT = 'ZHETRS' INFOT = 1 CALL ZHETRS( '/', 0, 0, A, 1, IP, B, 1, INFO ) CALL CHKXER( 'ZHETRS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZHETRS( 'U', -1, 0, A, 1, IP, B, 1, INFO ) CALL CHKXER( 'ZHETRS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZHETRS( 'U', 0, -1, A, 1, IP, B, 1, INFO ) CALL CHKXER( 'ZHETRS', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL ZHETRS( 'U', 2, 1, A, 1, IP, B, 2, INFO ) CALL CHKXER( 'ZHETRS', INFOT, NOUT, LERR, OK ) INFOT = 8 CALL ZHETRS( 'U', 2, 1, A, 2, IP, B, 1, INFO ) CALL CHKXER( 'ZHETRS', INFOT, NOUT, LERR, OK ) * * ZHERFS * SRNAMT = 'ZHERFS' INFOT = 1 CALL ZHERFS( '/', 0, 0, A, 1, AF, 1, IP, B, 1, X, 1, R1, R2, W, $ R, INFO ) CALL CHKXER( 'ZHERFS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZHERFS( 'U', -1, 0, A, 1, AF, 1, IP, B, 1, X, 1, R1, R2, $ W, R, INFO ) CALL CHKXER( 'ZHERFS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZHERFS( 'U', 0, -1, A, 1, AF, 1, IP, B, 1, X, 1, R1, R2, $ W, R, INFO ) CALL CHKXER( 'ZHERFS', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL ZHERFS( 'U', 2, 1, A, 1, AF, 2, IP, B, 2, X, 2, R1, R2, W, $ R, INFO ) CALL CHKXER( 'ZHERFS', INFOT, NOUT, LERR, OK ) INFOT = 7 CALL ZHERFS( 'U', 2, 1, A, 2, AF, 1, IP, B, 2, X, 2, R1, R2, W, $ R, INFO ) CALL CHKXER( 'ZHERFS', INFOT, NOUT, LERR, OK ) INFOT = 10 CALL ZHERFS( 'U', 2, 1, A, 2, AF, 2, IP, B, 1, X, 2, R1, R2, W, $ R, INFO ) CALL CHKXER( 'ZHERFS', INFOT, NOUT, LERR, OK ) INFOT = 12 CALL ZHERFS( 'U', 2, 1, A, 2, AF, 2, IP, B, 2, X, 1, R1, R2, W, $ R, INFO ) CALL CHKXER( 'ZHERFS', INFOT, NOUT, LERR, OK ) * * ZHECON * SRNAMT = 'ZHECON' INFOT = 1 CALL ZHECON( '/', 0, A, 1, IP, ANRM, RCOND, W, INFO ) CALL CHKXER( 'ZHECON', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZHECON( 'U', -1, A, 1, IP, ANRM, RCOND, W, INFO ) CALL CHKXER( 'ZHECON', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZHECON( 'U', 2, A, 1, IP, ANRM, RCOND, W, INFO ) CALL CHKXER( 'ZHECON', INFOT, NOUT, LERR, OK ) INFOT = 6 CALL ZHECON( 'U', 1, A, 1, IP, -ANRM, RCOND, W, INFO ) CALL CHKXER( 'ZHECON', INFOT, NOUT, LERR, OK ) * * Test error exits of the routines that use factorization * of a Hermitian indefinite matrix with "rook" * (bounded Bunch-Kaufman) diagonal pivoting method. * ELSE IF( LSAMEN( 2, C2, 'HR' ) ) THEN * * ZHETRF_ROOK * SRNAMT = 'ZHETRF_ROOK' INFOT = 1 CALL ZHETRF_ROOK( '/', 0, A, 1, IP, W, 1, INFO ) CALL CHKXER( 'ZHETRF_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZHETRF_ROOK( 'U', -1, A, 1, IP, W, 1, INFO ) CALL CHKXER( 'ZHETRF_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZHETRF_ROOK( 'U', 2, A, 1, IP, W, 4, INFO ) CALL CHKXER( 'ZHETRF_ROOK', INFOT, NOUT, LERR, OK ) * * ZHETF2_ROOK * SRNAMT = 'ZHETF2_ROOK' INFOT = 1 CALL ZHETF2_ROOK( '/', 0, A, 1, IP, INFO ) CALL CHKXER( 'ZHETF2_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZHETF2_ROOK( 'U', -1, A, 1, IP, INFO ) CALL CHKXER( 'ZHETF2_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZHETF2_ROOK( 'U', 2, A, 1, IP, INFO ) CALL CHKXER( 'ZHETF2_ROOK', INFOT, NOUT, LERR, OK ) * * ZHETRI_ROOK * SRNAMT = 'ZHETRI_ROOK' INFOT = 1 CALL ZHETRI_ROOK( '/', 0, A, 1, IP, W, INFO ) CALL CHKXER( 'ZHETRI_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZHETRI_ROOK( 'U', -1, A, 1, IP, W, INFO ) CALL CHKXER( 'ZHETRI_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZHETRI_ROOK( 'U', 2, A, 1, IP, W, INFO ) CALL CHKXER( 'ZHETRI_ROOK', INFOT, NOUT, LERR, OK ) * * ZHETRS_ROOK * SRNAMT = 'ZHETRS_ROOK' INFOT = 1 CALL ZHETRS_ROOK( '/', 0, 0, A, 1, IP, B, 1, INFO ) CALL CHKXER( 'ZHETRS_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZHETRS_ROOK( 'U', -1, 0, A, 1, IP, B, 1, INFO ) CALL CHKXER( 'ZHETRS_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZHETRS_ROOK( 'U', 0, -1, A, 1, IP, B, 1, INFO ) CALL CHKXER( 'ZHETRS_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL ZHETRS_ROOK( 'U', 2, 1, A, 1, IP, B, 2, INFO ) CALL CHKXER( 'ZHETRS_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 8 CALL ZHETRS_ROOK( 'U', 2, 1, A, 2, IP, B, 1, INFO ) CALL CHKXER( 'ZHETRS_ROOK', INFOT, NOUT, LERR, OK ) * * ZHECON_ROOK * SRNAMT = 'ZHECON_ROOK' INFOT = 1 CALL ZHECON_ROOK( '/', 0, A, 1, IP, ANRM, RCOND, W, INFO ) CALL CHKXER( 'ZHECON_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZHECON_ROOK( 'U', -1, A, 1, IP, ANRM, RCOND, W, INFO ) CALL CHKXER( 'ZHECON_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZHECON_ROOK( 'U', 2, A, 1, IP, ANRM, RCOND, W, INFO ) CALL CHKXER( 'ZHECON_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 6 CALL ZHECON_ROOK( 'U', 1, A, 1, IP, -ANRM, RCOND, W, INFO ) CALL CHKXER( 'ZHECON_ROOK', INFOT, NOUT, LERR, OK ) * * Test error exits of the routines that use factorization * of a Hermitian indefinite packed matrix with patrial * (Bunch-Kaufman) diagonal pivoting method. * ELSE IF( LSAMEN( 2, C2, 'HP' ) ) THEN * * ZHPTRF * SRNAMT = 'ZHPTRF' INFOT = 1 CALL ZHPTRF( '/', 0, A, IP, INFO ) CALL CHKXER( 'ZHPTRF', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZHPTRF( 'U', -1, A, IP, INFO ) CALL CHKXER( 'ZHPTRF', INFOT, NOUT, LERR, OK ) * * ZHPTRI * SRNAMT = 'ZHPTRI' INFOT = 1 CALL ZHPTRI( '/', 0, A, IP, W, INFO ) CALL CHKXER( 'ZHPTRI', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZHPTRI( 'U', -1, A, IP, W, INFO ) CALL CHKXER( 'ZHPTRI', INFOT, NOUT, LERR, OK ) * * ZHPTRS * SRNAMT = 'ZHPTRS' INFOT = 1 CALL ZHPTRS( '/', 0, 0, A, IP, B, 1, INFO ) CALL CHKXER( 'ZHPTRS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZHPTRS( 'U', -1, 0, A, IP, B, 1, INFO ) CALL CHKXER( 'ZHPTRS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZHPTRS( 'U', 0, -1, A, IP, B, 1, INFO ) CALL CHKXER( 'ZHPTRS', INFOT, NOUT, LERR, OK ) INFOT = 7 CALL ZHPTRS( 'U', 2, 1, A, IP, B, 1, INFO ) CALL CHKXER( 'ZHPTRS', INFOT, NOUT, LERR, OK ) * * ZHPRFS * SRNAMT = 'ZHPRFS' INFOT = 1 CALL ZHPRFS( '/', 0, 0, A, AF, IP, B, 1, X, 1, R1, R2, W, R, $ INFO ) CALL CHKXER( 'ZHPRFS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZHPRFS( 'U', -1, 0, A, AF, IP, B, 1, X, 1, R1, R2, W, R, $ INFO ) CALL CHKXER( 'ZHPRFS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZHPRFS( 'U', 0, -1, A, AF, IP, B, 1, X, 1, R1, R2, W, R, $ INFO ) CALL CHKXER( 'ZHPRFS', INFOT, NOUT, LERR, OK ) INFOT = 8 CALL ZHPRFS( 'U', 2, 1, A, AF, IP, B, 1, X, 2, R1, R2, W, R, $ INFO ) CALL CHKXER( 'ZHPRFS', INFOT, NOUT, LERR, OK ) INFOT = 10 CALL ZHPRFS( 'U', 2, 1, A, AF, IP, B, 2, X, 1, R1, R2, W, R, $ INFO ) CALL CHKXER( 'ZHPRFS', INFOT, NOUT, LERR, OK ) * * ZHPCON * SRNAMT = 'ZHPCON' INFOT = 1 CALL ZHPCON( '/', 0, A, IP, ANRM, RCOND, W, INFO ) CALL CHKXER( 'ZHPCON', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZHPCON( 'U', -1, A, IP, ANRM, RCOND, W, INFO ) CALL CHKXER( 'ZHPCON', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL ZHPCON( 'U', 1, A, IP, -ANRM, RCOND, W, INFO ) CALL CHKXER( 'ZHPCON', INFOT, NOUT, LERR, OK ) END IF * * Print a summary line. * CALL ALAESM( PATH, OK, NOUT ) * RETURN * * End of ZERRHE * END