*> \brief \b ZERRPOX * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE ZERRPO( PATH, NUNIT ) * * .. Scalar Arguments .. * CHARACTER*3 PATH * INTEGER NUNIT * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ZERRPO tests the error exits for the COMPLEX*16 routines *> for Hermitian positive definite matrices. *> *> Note that this file is used only when the XBLAS are available, *> otherwise zerrpo.f defines this subroutine. *> \endverbatim * * Arguments: * ========== * *> \param[in] PATH *> \verbatim *> PATH is CHARACTER*3 *> The LAPACK path name for the routines to be tested. *> \endverbatim *> *> \param[in] NUNIT *> \verbatim *> NUNIT is INTEGER *> The unit number for output. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date November 2015 * *> \ingroup complex16_lin * * ===================================================================== SUBROUTINE ZERRPO( PATH, NUNIT ) * * -- LAPACK test routine (version 3.6.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2015 * * .. Scalar Arguments .. CHARACTER*3 PATH INTEGER NUNIT * .. * * ===================================================================== * * .. Parameters .. INTEGER NMAX PARAMETER ( NMAX = 4 ) * .. * .. Local Scalars .. CHARACTER EQ CHARACTER*2 C2 INTEGER I, INFO, J, N_ERR_BNDS, NPARAMS DOUBLE PRECISION ANRM, RCOND, BERR * .. * .. Local Arrays .. DOUBLE PRECISION S( NMAX ), R( NMAX ), R1( NMAX ), R2( NMAX ), $ ERR_BNDS_N( NMAX, 3 ), ERR_BNDS_C( NMAX, 3 ), $ PARAMS( 1 ) COMPLEX*16 A( NMAX, NMAX ), AF( NMAX, NMAX ), B( NMAX ), $ W( 2*NMAX ), X( NMAX ) * .. * .. External Functions .. LOGICAL LSAMEN EXTERNAL LSAMEN * .. * .. External Subroutines .. EXTERNAL ALAESM, CHKXER, ZPBCON, ZPBEQU, ZPBRFS, ZPBTF2, $ ZPBTRF, ZPBTRS, ZPOCON, ZPOEQU, ZPORFS, ZPOTF2, $ ZPOTRF, ZPOTRI, ZPOTRS, ZPPCON, ZPPEQU, ZPPRFS, $ ZPPTRF, ZPPTRI, ZPPTRS, ZPOEQUB, ZPORFSX * .. * .. Scalars in Common .. LOGICAL LERR, OK CHARACTER*32 SRNAMT INTEGER INFOT, NOUT * .. * .. Common blocks .. COMMON / INFOC / INFOT, NOUT, OK, LERR COMMON / SRNAMC / SRNAMT * .. * .. Intrinsic Functions .. INTRINSIC DBLE, DCMPLX * .. * .. Executable Statements .. * NOUT = NUNIT WRITE( NOUT, FMT = * ) C2 = PATH( 2: 3 ) * * Set the variables to innocuous values. * DO 20 J = 1, NMAX DO 10 I = 1, NMAX A( I, J ) = DCMPLX( 1.D0 / DBLE( I+J ), $ -1.D0 / DBLE( I+J ) ) AF( I, J ) = DCMPLX( 1.D0 / DBLE( I+J ), $ -1.D0 / DBLE( I+J ) ) 10 CONTINUE B( J ) = 0.D0 R1( J ) = 0.D0 R2( J ) = 0.D0 W( J ) = 0.D0 X( J ) = 0.D0 S( J ) = 0.D0 20 CONTINUE ANRM = 1.D0 OK = .TRUE. * * Test error exits of the routines that use the Cholesky * decomposition of a Hermitian positive definite matrix. * IF( LSAMEN( 2, C2, 'PO' ) ) THEN * * ZPOTRF * SRNAMT = 'ZPOTRF' INFOT = 1 CALL ZPOTRF( '/', 0, A, 1, INFO ) CALL CHKXER( 'ZPOTRF', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZPOTRF( 'U', -1, A, 1, INFO ) CALL CHKXER( 'ZPOTRF', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZPOTRF( 'U', 2, A, 1, INFO ) CALL CHKXER( 'ZPOTRF', INFOT, NOUT, LERR, OK ) * * ZPOTF2 * SRNAMT = 'ZPOTF2' INFOT = 1 CALL ZPOTF2( '/', 0, A, 1, INFO ) CALL CHKXER( 'ZPOTF2', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZPOTF2( 'U', -1, A, 1, INFO ) CALL CHKXER( 'ZPOTF2', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZPOTF2( 'U', 2, A, 1, INFO ) CALL CHKXER( 'ZPOTF2', INFOT, NOUT, LERR, OK ) * * ZPOTRI * SRNAMT = 'ZPOTRI' INFOT = 1 CALL ZPOTRI( '/', 0, A, 1, INFO ) CALL CHKXER( 'ZPOTRI', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZPOTRI( 'U', -1, A, 1, INFO ) CALL CHKXER( 'ZPOTRI', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZPOTRI( 'U', 2, A, 1, INFO ) CALL CHKXER( 'ZPOTRI', INFOT, NOUT, LERR, OK ) * * ZPOTRS * SRNAMT = 'ZPOTRS' INFOT = 1 CALL ZPOTRS( '/', 0, 0, A, 1, B, 1, INFO ) CALL CHKXER( 'ZPOTRS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZPOTRS( 'U', -1, 0, A, 1, B, 1, INFO ) CALL CHKXER( 'ZPOTRS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZPOTRS( 'U', 0, -1, A, 1, B, 1, INFO ) CALL CHKXER( 'ZPOTRS', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL ZPOTRS( 'U', 2, 1, A, 1, B, 2, INFO ) CALL CHKXER( 'ZPOTRS', INFOT, NOUT, LERR, OK ) INFOT = 7 CALL ZPOTRS( 'U', 2, 1, A, 2, B, 1, INFO ) CALL CHKXER( 'ZPOTRS', INFOT, NOUT, LERR, OK ) * * ZPORFS * SRNAMT = 'ZPORFS' INFOT = 1 CALL ZPORFS( '/', 0, 0, A, 1, AF, 1, B, 1, X, 1, R1, R2, W, R, $ INFO ) CALL CHKXER( 'ZPORFS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZPORFS( 'U', -1, 0, A, 1, AF, 1, B, 1, X, 1, R1, R2, W, R, $ INFO ) CALL CHKXER( 'ZPORFS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZPORFS( 'U', 0, -1, A, 1, AF, 1, B, 1, X, 1, R1, R2, W, R, $ INFO ) CALL CHKXER( 'ZPORFS', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL ZPORFS( 'U', 2, 1, A, 1, AF, 2, B, 2, X, 2, R1, R2, W, R, $ INFO ) CALL CHKXER( 'ZPORFS', INFOT, NOUT, LERR, OK ) INFOT = 7 CALL ZPORFS( 'U', 2, 1, A, 2, AF, 1, B, 2, X, 2, R1, R2, W, R, $ INFO ) CALL CHKXER( 'ZPORFS', INFOT, NOUT, LERR, OK ) INFOT = 9 CALL ZPORFS( 'U', 2, 1, A, 2, AF, 2, B, 1, X, 2, R1, R2, W, R, $ INFO ) CALL CHKXER( 'ZPORFS', INFOT, NOUT, LERR, OK ) INFOT = 11 CALL ZPORFS( 'U', 2, 1, A, 2, AF, 2, B, 2, X, 1, R1, R2, W, R, $ INFO ) CALL CHKXER( 'ZPORFS', INFOT, NOUT, LERR, OK ) * * ZPORFSX * N_ERR_BNDS = 3 NPARAMS = 0 SRNAMT = 'ZPORFSX' INFOT = 1 CALL ZPORFSX( '/', EQ, 0, 0, A, 1, AF, 1, S, B, 1, X, 1, $ RCOND, BERR, N_ERR_BNDS, ERR_BNDS_N, ERR_BNDS_C, NPARAMS, $ PARAMS, W, R, INFO ) CALL CHKXER( 'ZPORFSX', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZPORFSX( 'U', "/", -1, 0, A, 1, AF, 1, S, B, 1, X, 1, $ RCOND, BERR, N_ERR_BNDS, ERR_BNDS_N, ERR_BNDS_C, NPARAMS, $ PARAMS, W, R, INFO ) CALL CHKXER( 'ZPORFSX', INFOT, NOUT, LERR, OK ) EQ = 'N' INFOT = 3 CALL ZPORFSX( 'U', EQ, -1, 0, A, 1, AF, 1, S, B, 1, X, 1, $ RCOND, BERR, N_ERR_BNDS, ERR_BNDS_N, ERR_BNDS_C, NPARAMS, $ PARAMS, W, R, INFO ) CALL CHKXER( 'ZPORFSX', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZPORFSX( 'U', EQ, 0, -1, A, 1, AF, 1, S, B, 1, X, 1, $ RCOND, BERR, N_ERR_BNDS, ERR_BNDS_N, ERR_BNDS_C, NPARAMS, $ PARAMS, W, R, INFO ) CALL CHKXER( 'ZPORFSX', INFOT, NOUT, LERR, OK ) INFOT = 6 CALL ZPORFSX( 'U', EQ, 2, 1, A, 1, AF, 2, S, B, 2, X, 2, $ RCOND, BERR, N_ERR_BNDS, ERR_BNDS_N, ERR_BNDS_C, NPARAMS, $ PARAMS, W, R, INFO ) CALL CHKXER( 'ZPORFSX', INFOT, NOUT, LERR, OK ) INFOT = 8 CALL ZPORFSX( 'U', EQ, 2, 1, A, 2, AF, 1, S, B, 2, X, 2, $ RCOND, BERR, N_ERR_BNDS, ERR_BNDS_N, ERR_BNDS_C, NPARAMS, $ PARAMS, W, R, INFO ) CALL CHKXER( 'ZPORFSX', INFOT, NOUT, LERR, OK ) INFOT = 11 CALL ZPORFSX( 'U', EQ, 2, 1, A, 2, AF, 2, S, B, 1, X, 2, $ RCOND, BERR, N_ERR_BNDS, ERR_BNDS_N, ERR_BNDS_C, NPARAMS, $ PARAMS, W, R, INFO ) CALL CHKXER( 'ZPORFSX', INFOT, NOUT, LERR, OK ) INFOT = 13 CALL ZPORFSX( 'U', EQ, 2, 1, A, 2, AF, 2, S, B, 2, X, 1, $ RCOND, BERR, N_ERR_BNDS, ERR_BNDS_N, ERR_BNDS_C, NPARAMS, $ PARAMS, W, R, INFO ) CALL CHKXER( 'ZPORFSX', INFOT, NOUT, LERR, OK ) * * ZPOCON * SRNAMT = 'ZPOCON' INFOT = 1 CALL ZPOCON( '/', 0, A, 1, ANRM, RCOND, W, R, INFO ) CALL CHKXER( 'ZPOCON', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZPOCON( 'U', -1, A, 1, ANRM, RCOND, W, R, INFO ) CALL CHKXER( 'ZPOCON', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZPOCON( 'U', 2, A, 1, ANRM, RCOND, W, R, INFO ) CALL CHKXER( 'ZPOCON', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL ZPOCON( 'U', 1, A, 1, -ANRM, RCOND, W, R, INFO ) CALL CHKXER( 'ZPOCON', INFOT, NOUT, LERR, OK ) * * ZPOEQU * SRNAMT = 'ZPOEQU' INFOT = 1 CALL ZPOEQU( -1, A, 1, R1, RCOND, ANRM, INFO ) CALL CHKXER( 'ZPOEQU', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZPOEQU( 2, A, 1, R1, RCOND, ANRM, INFO ) CALL CHKXER( 'ZPOEQU', INFOT, NOUT, LERR, OK ) * * ZPOEQUB * SRNAMT = 'ZPOEQUB' INFOT = 1 CALL ZPOEQUB( -1, A, 1, R1, RCOND, ANRM, INFO ) CALL CHKXER( 'ZPOEQUB', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZPOEQUB( 2, A, 1, R1, RCOND, ANRM, INFO ) CALL CHKXER( 'ZPOEQUB', INFOT, NOUT, LERR, OK ) * * Test error exits of the routines that use the Cholesky * decomposition of a Hermitian positive definite packed matrix. * ELSE IF( LSAMEN( 2, C2, 'PP' ) ) THEN * * ZPPTRF * SRNAMT = 'ZPPTRF' INFOT = 1 CALL ZPPTRF( '/', 0, A, INFO ) CALL CHKXER( 'ZPPTRF', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZPPTRF( 'U', -1, A, INFO ) CALL CHKXER( 'ZPPTRF', INFOT, NOUT, LERR, OK ) * * ZPPTRI * SRNAMT = 'ZPPTRI' INFOT = 1 CALL ZPPTRI( '/', 0, A, INFO ) CALL CHKXER( 'ZPPTRI', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZPPTRI( 'U', -1, A, INFO ) CALL CHKXER( 'ZPPTRI', INFOT, NOUT, LERR, OK ) * * ZPPTRS * SRNAMT = 'ZPPTRS' INFOT = 1 CALL ZPPTRS( '/', 0, 0, A, B, 1, INFO ) CALL CHKXER( 'ZPPTRS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZPPTRS( 'U', -1, 0, A, B, 1, INFO ) CALL CHKXER( 'ZPPTRS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZPPTRS( 'U', 0, -1, A, B, 1, INFO ) CALL CHKXER( 'ZPPTRS', INFOT, NOUT, LERR, OK ) INFOT = 6 CALL ZPPTRS( 'U', 2, 1, A, B, 1, INFO ) CALL CHKXER( 'ZPPTRS', INFOT, NOUT, LERR, OK ) * * ZPPRFS * SRNAMT = 'ZPPRFS' INFOT = 1 CALL ZPPRFS( '/', 0, 0, A, AF, B, 1, X, 1, R1, R2, W, R, INFO ) CALL CHKXER( 'ZPPRFS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZPPRFS( 'U', -1, 0, A, AF, B, 1, X, 1, R1, R2, W, R, $ INFO ) CALL CHKXER( 'ZPPRFS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZPPRFS( 'U', 0, -1, A, AF, B, 1, X, 1, R1, R2, W, R, $ INFO ) CALL CHKXER( 'ZPPRFS', INFOT, NOUT, LERR, OK ) INFOT = 7 CALL ZPPRFS( 'U', 2, 1, A, AF, B, 1, X, 2, R1, R2, W, R, INFO ) CALL CHKXER( 'ZPPRFS', INFOT, NOUT, LERR, OK ) INFOT = 9 CALL ZPPRFS( 'U', 2, 1, A, AF, B, 2, X, 1, R1, R2, W, R, INFO ) CALL CHKXER( 'ZPPRFS', INFOT, NOUT, LERR, OK ) * * ZPPCON * SRNAMT = 'ZPPCON' INFOT = 1 CALL ZPPCON( '/', 0, A, ANRM, RCOND, W, R, INFO ) CALL CHKXER( 'ZPPCON', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZPPCON( 'U', -1, A, ANRM, RCOND, W, R, INFO ) CALL CHKXER( 'ZPPCON', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZPPCON( 'U', 1, A, -ANRM, RCOND, W, R, INFO ) CALL CHKXER( 'ZPPCON', INFOT, NOUT, LERR, OK ) * * ZPPEQU * SRNAMT = 'ZPPEQU' INFOT = 1 CALL ZPPEQU( '/', 0, A, R1, RCOND, ANRM, INFO ) CALL CHKXER( 'ZPPEQU', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZPPEQU( 'U', -1, A, R1, RCOND, ANRM, INFO ) CALL CHKXER( 'ZPPEQU', INFOT, NOUT, LERR, OK ) * * Test error exits of the routines that use the Cholesky * decomposition of a Hermitian positive definite band matrix. * ELSE IF( LSAMEN( 2, C2, 'PB' ) ) THEN * * ZPBTRF * SRNAMT = 'ZPBTRF' INFOT = 1 CALL ZPBTRF( '/', 0, 0, A, 1, INFO ) CALL CHKXER( 'ZPBTRF', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZPBTRF( 'U', -1, 0, A, 1, INFO ) CALL CHKXER( 'ZPBTRF', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZPBTRF( 'U', 1, -1, A, 1, INFO ) CALL CHKXER( 'ZPBTRF', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL ZPBTRF( 'U', 2, 1, A, 1, INFO ) CALL CHKXER( 'ZPBTRF', INFOT, NOUT, LERR, OK ) * * ZPBTF2 * SRNAMT = 'ZPBTF2' INFOT = 1 CALL ZPBTF2( '/', 0, 0, A, 1, INFO ) CALL CHKXER( 'ZPBTF2', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZPBTF2( 'U', -1, 0, A, 1, INFO ) CALL CHKXER( 'ZPBTF2', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZPBTF2( 'U', 1, -1, A, 1, INFO ) CALL CHKXER( 'ZPBTF2', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL ZPBTF2( 'U', 2, 1, A, 1, INFO ) CALL CHKXER( 'ZPBTF2', INFOT, NOUT, LERR, OK ) * * ZPBTRS * SRNAMT = 'ZPBTRS' INFOT = 1 CALL ZPBTRS( '/', 0, 0, 0, A, 1, B, 1, INFO ) CALL CHKXER( 'ZPBTRS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZPBTRS( 'U', -1, 0, 0, A, 1, B, 1, INFO ) CALL CHKXER( 'ZPBTRS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZPBTRS( 'U', 1, -1, 0, A, 1, B, 1, INFO ) CALL CHKXER( 'ZPBTRS', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZPBTRS( 'U', 0, 0, -1, A, 1, B, 1, INFO ) CALL CHKXER( 'ZPBTRS', INFOT, NOUT, LERR, OK ) INFOT = 6 CALL ZPBTRS( 'U', 2, 1, 1, A, 1, B, 1, INFO ) CALL CHKXER( 'ZPBTRS', INFOT, NOUT, LERR, OK ) INFOT = 8 CALL ZPBTRS( 'U', 2, 0, 1, A, 1, B, 1, INFO ) CALL CHKXER( 'ZPBTRS', INFOT, NOUT, LERR, OK ) * * ZPBRFS * SRNAMT = 'ZPBRFS' INFOT = 1 CALL ZPBRFS( '/', 0, 0, 0, A, 1, AF, 1, B, 1, X, 1, R1, R2, W, $ R, INFO ) CALL CHKXER( 'ZPBRFS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZPBRFS( 'U', -1, 0, 0, A, 1, AF, 1, B, 1, X, 1, R1, R2, W, $ R, INFO ) CALL CHKXER( 'ZPBRFS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZPBRFS( 'U', 1, -1, 0, A, 1, AF, 1, B, 1, X, 1, R1, R2, W, $ R, INFO ) CALL CHKXER( 'ZPBRFS', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZPBRFS( 'U', 0, 0, -1, A, 1, AF, 1, B, 1, X, 1, R1, R2, W, $ R, INFO ) CALL CHKXER( 'ZPBRFS', INFOT, NOUT, LERR, OK ) INFOT = 6 CALL ZPBRFS( 'U', 2, 1, 1, A, 1, AF, 2, B, 2, X, 2, R1, R2, W, $ R, INFO ) CALL CHKXER( 'ZPBRFS', INFOT, NOUT, LERR, OK ) INFOT = 8 CALL ZPBRFS( 'U', 2, 1, 1, A, 2, AF, 1, B, 2, X, 2, R1, R2, W, $ R, INFO ) CALL CHKXER( 'ZPBRFS', INFOT, NOUT, LERR, OK ) INFOT = 10 CALL ZPBRFS( 'U', 2, 0, 1, A, 1, AF, 1, B, 1, X, 2, R1, R2, W, $ R, INFO ) CALL CHKXER( 'ZPBRFS', INFOT, NOUT, LERR, OK ) INFOT = 12 CALL ZPBRFS( 'U', 2, 0, 1, A, 1, AF, 1, B, 2, X, 1, R1, R2, W, $ R, INFO ) CALL CHKXER( 'ZPBRFS', INFOT, NOUT, LERR, OK ) * * ZPBCON * SRNAMT = 'ZPBCON' INFOT = 1 CALL ZPBCON( '/', 0, 0, A, 1, ANRM, RCOND, W, R, INFO ) CALL CHKXER( 'ZPBCON', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZPBCON( 'U', -1, 0, A, 1, ANRM, RCOND, W, R, INFO ) CALL CHKXER( 'ZPBCON', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZPBCON( 'U', 1, -1, A, 1, ANRM, RCOND, W, R, INFO ) CALL CHKXER( 'ZPBCON', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL ZPBCON( 'U', 2, 1, A, 1, ANRM, RCOND, W, R, INFO ) CALL CHKXER( 'ZPBCON', INFOT, NOUT, LERR, OK ) INFOT = 6 CALL ZPBCON( 'U', 1, 0, A, 1, -ANRM, RCOND, W, R, INFO ) CALL CHKXER( 'ZPBCON', INFOT, NOUT, LERR, OK ) * * ZPBEQU * SRNAMT = 'ZPBEQU' INFOT = 1 CALL ZPBEQU( '/', 0, 0, A, 1, R1, RCOND, ANRM, INFO ) CALL CHKXER( 'ZPBEQU', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZPBEQU( 'U', -1, 0, A, 1, R1, RCOND, ANRM, INFO ) CALL CHKXER( 'ZPBEQU', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZPBEQU( 'U', 1, -1, A, 1, R1, RCOND, ANRM, INFO ) CALL CHKXER( 'ZPBEQU', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL ZPBEQU( 'U', 2, 1, A, 1, R1, RCOND, ANRM, INFO ) CALL CHKXER( 'ZPBEQU', INFOT, NOUT, LERR, OK ) END IF * * Print a summary line. * CALL ALAESM( PATH, OK, NOUT ) * RETURN * * End of ZERRPO * END