*> \brief \b ZERRSY * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE ZERRSY( PATH, NUNIT ) * * .. Scalar Arguments .. * CHARACTER*3 PATH * INTEGER NUNIT * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ZERRSY tests the error exits for the COMPLEX*16 routines *> for symmetric indefinite matrices. *> \endverbatim * * Arguments: * ========== * *> \param[in] PATH *> \verbatim *> PATH is CHARACTER*3 *> The LAPACK path name for the routines to be tested. *> \endverbatim *> *> \param[in] NUNIT *> \verbatim *> NUNIT is INTEGER *> The unit number for output. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date November 2013 * *> \ingroup complex16_lin * * ===================================================================== SUBROUTINE ZERRSY( PATH, NUNIT ) * * -- LAPACK test routine (version 3.5.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2013 * * .. Scalar Arguments .. CHARACTER*3 PATH INTEGER NUNIT * .. * * ===================================================================== * * .. Parameters .. INTEGER NMAX PARAMETER ( NMAX = 4 ) * .. * .. Local Scalars .. CHARACTER*2 C2 INTEGER I, INFO, J DOUBLE PRECISION ANRM, RCOND * .. * .. Local Arrays .. INTEGER IP( NMAX ) DOUBLE PRECISION R( NMAX ), R1( NMAX ), R2( NMAX ) COMPLEX*16 A( NMAX, NMAX ), AF( NMAX, NMAX ), B( NMAX ), $ W( 2*NMAX ), X( NMAX ) * .. * .. External Functions .. LOGICAL LSAMEN EXTERNAL LSAMEN * .. * .. External Subroutines .. EXTERNAL ALAESM, CHKXER, ZSPCON, ZSPRFS, ZSPTRF, ZSPTRI, $ ZSPTRS, ZSYCON, ZSYCON_ROOK, ZSYRFS, ZSYTF2, $ ZSYTF2_ROOK, ZSYTRF, ZSYTRF_ROOK, ZSYTRI, $ ZSYTRI_ROOK, ZSYTRI2, ZSYTRS, ZSYTRS_ROOK * .. * .. Scalars in Common .. LOGICAL LERR, OK CHARACTER*32 SRNAMT INTEGER INFOT, NOUT * .. * .. Common blocks .. COMMON / INFOC / INFOT, NOUT, OK, LERR COMMON / SRNAMC / SRNAMT * .. * .. Intrinsic Functions .. INTRINSIC DBLE, DCMPLX * .. * .. Executable Statements .. * NOUT = NUNIT WRITE( NOUT, FMT = * ) C2 = PATH( 2: 3 ) * * Set the variables to innocuous values. * DO 20 J = 1, NMAX DO 10 I = 1, NMAX A( I, J ) = DCMPLX( 1.D0 / DBLE( I+J ), $ -1.D0 / DBLE( I+J ) ) AF( I, J ) = DCMPLX( 1.D0 / DBLE( I+J ), $ -1.D0 / DBLE( I+J ) ) 10 CONTINUE B( J ) = 0.D0 R1( J ) = 0.D0 R2( J ) = 0.D0 W( J ) = 0.D0 X( J ) = 0.D0 IP( J ) = J 20 CONTINUE ANRM = 1.0D0 OK = .TRUE. * * Test error exits of the routines that use factorization * of a symmetric indefinite matrix with patrial * (Bunch-Kaufman) diagonal pivoting method. * IF( LSAMEN( 2, C2, 'SY' ) ) THEN * * ZSYTRF * SRNAMT = 'ZSYTRF' INFOT = 1 CALL ZSYTRF( '/', 0, A, 1, IP, W, 1, INFO ) CALL CHKXER( 'ZSYTRF', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZSYTRF( 'U', -1, A, 1, IP, W, 1, INFO ) CALL CHKXER( 'ZSYTRF', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZSYTRF( 'U', 2, A, 1, IP, W, 4, INFO ) CALL CHKXER( 'ZSYTRF', INFOT, NOUT, LERR, OK ) * * ZSYTF2 * SRNAMT = 'ZSYTF2' INFOT = 1 CALL ZSYTF2( '/', 0, A, 1, IP, INFO ) CALL CHKXER( 'ZSYTF2', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZSYTF2( 'U', -1, A, 1, IP, INFO ) CALL CHKXER( 'ZSYTF2', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZSYTF2( 'U', 2, A, 1, IP, INFO ) CALL CHKXER( 'ZSYTF2', INFOT, NOUT, LERR, OK ) * * ZSYTRI * SRNAMT = 'ZSYTRI' INFOT = 1 CALL ZSYTRI( '/', 0, A, 1, IP, W, INFO ) CALL CHKXER( 'ZSYTRI', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZSYTRI( 'U', -1, A, 1, IP, W, INFO ) CALL CHKXER( 'ZSYTRI', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZSYTRI( 'U', 2, A, 1, IP, W, INFO ) CALL CHKXER( 'ZSYTRI', INFOT, NOUT, LERR, OK ) * * ZSYTRI2 * SRNAMT = 'ZSYTRI2' INFOT = 1 CALL ZSYTRI2( '/', 0, A, 1, IP, W, 1, INFO ) CALL CHKXER( 'ZSYTRI2', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZSYTRI2( 'U', -1, A, 1, IP, W, 1, INFO ) CALL CHKXER( 'ZSYTRI2', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZSYTRI2( 'U', 2, A, 1, IP, W, 1, INFO ) CALL CHKXER( 'ZSYTRI2', INFOT, NOUT, LERR, OK ) * * ZSYTRS * SRNAMT = 'ZSYTRS' INFOT = 1 CALL ZSYTRS( '/', 0, 0, A, 1, IP, B, 1, INFO ) CALL CHKXER( 'ZSYTRS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZSYTRS( 'U', -1, 0, A, 1, IP, B, 1, INFO ) CALL CHKXER( 'ZSYTRS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZSYTRS( 'U', 0, -1, A, 1, IP, B, 1, INFO ) CALL CHKXER( 'ZSYTRS', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL ZSYTRS( 'U', 2, 1, A, 1, IP, B, 2, INFO ) CALL CHKXER( 'ZSYTRS', INFOT, NOUT, LERR, OK ) INFOT = 8 CALL ZSYTRS( 'U', 2, 1, A, 2, IP, B, 1, INFO ) CALL CHKXER( 'ZSYTRS', INFOT, NOUT, LERR, OK ) * * ZSYRFS * SRNAMT = 'ZSYRFS' INFOT = 1 CALL ZSYRFS( '/', 0, 0, A, 1, AF, 1, IP, B, 1, X, 1, R1, R2, W, $ R, INFO ) CALL CHKXER( 'ZSYRFS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZSYRFS( 'U', -1, 0, A, 1, AF, 1, IP, B, 1, X, 1, R1, R2, $ W, R, INFO ) CALL CHKXER( 'ZSYRFS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZSYRFS( 'U', 0, -1, A, 1, AF, 1, IP, B, 1, X, 1, R1, R2, $ W, R, INFO ) CALL CHKXER( 'ZSYRFS', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL ZSYRFS( 'U', 2, 1, A, 1, AF, 2, IP, B, 2, X, 2, R1, R2, W, $ R, INFO ) CALL CHKXER( 'ZSYRFS', INFOT, NOUT, LERR, OK ) INFOT = 7 CALL ZSYRFS( 'U', 2, 1, A, 2, AF, 1, IP, B, 2, X, 2, R1, R2, W, $ R, INFO ) CALL CHKXER( 'ZSYRFS', INFOT, NOUT, LERR, OK ) INFOT = 10 CALL ZSYRFS( 'U', 2, 1, A, 2, AF, 2, IP, B, 1, X, 2, R1, R2, W, $ R, INFO ) CALL CHKXER( 'ZSYRFS', INFOT, NOUT, LERR, OK ) INFOT = 12 CALL ZSYRFS( 'U', 2, 1, A, 2, AF, 2, IP, B, 2, X, 1, R1, R2, W, $ R, INFO ) CALL CHKXER( 'ZSYRFS', INFOT, NOUT, LERR, OK ) * * ZSYCON * SRNAMT = 'ZSYCON' INFOT = 1 CALL ZSYCON( '/', 0, A, 1, IP, ANRM, RCOND, W, INFO ) CALL CHKXER( 'ZSYCON', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZSYCON( 'U', -1, A, 1, IP, ANRM, RCOND, W, INFO ) CALL CHKXER( 'ZSYCON', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZSYCON( 'U', 2, A, 1, IP, ANRM, RCOND, W, INFO ) CALL CHKXER( 'ZSYCON', INFOT, NOUT, LERR, OK ) INFOT = 6 CALL ZSYCON( 'U', 1, A, 1, IP, -ANRM, RCOND, W, INFO ) CALL CHKXER( 'ZSYCON', INFOT, NOUT, LERR, OK ) * * Test error exits of the routines that use factorization * of a symmetric indefinite matrix with "rook" * (bounded Bunch-Kaufman) diagonal pivoting method. * ELSE IF( LSAMEN( 2, C2, 'SR' ) ) THEN * * ZSYTRF_ROOK * SRNAMT = 'ZSYTRF_ROOK' INFOT = 1 CALL ZSYTRF_ROOK( '/', 0, A, 1, IP, W, 1, INFO ) CALL CHKXER( 'ZSYTRF_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZSYTRF_ROOK( 'U', -1, A, 1, IP, W, 1, INFO ) CALL CHKXER( 'ZSYTRF_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZSYTRF_ROOK( 'U', 2, A, 1, IP, W, 4, INFO ) CALL CHKXER( 'ZSYTRF_ROOK', INFOT, NOUT, LERR, OK ) * * ZSYTF2_ROOK * SRNAMT = 'ZSYTF2_ROOK' INFOT = 1 CALL ZSYTF2_ROOK( '/', 0, A, 1, IP, INFO ) CALL CHKXER( 'ZSYTF2_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZSYTF2_ROOK( 'U', -1, A, 1, IP, INFO ) CALL CHKXER( 'ZSYTF2_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZSYTF2_ROOK( 'U', 2, A, 1, IP, INFO ) CALL CHKXER( 'ZSYTF2_ROOK', INFOT, NOUT, LERR, OK ) * * ZSYTRI_ROOK * SRNAMT = 'ZSYTRI_ROOK' INFOT = 1 CALL ZSYTRI_ROOK( '/', 0, A, 1, IP, W, INFO ) CALL CHKXER( 'ZSYTRI_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZSYTRI_ROOK( 'U', -1, A, 1, IP, W, INFO ) CALL CHKXER( 'ZSYTRI_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZSYTRI_ROOK( 'U', 2, A, 1, IP, W, INFO ) CALL CHKXER( 'ZSYTRI_ROOK', INFOT, NOUT, LERR, OK ) * * ZSYTRS_ROOK * SRNAMT = 'ZSYTRS_ROOK' INFOT = 1 CALL ZSYTRS_ROOK( '/', 0, 0, A, 1, IP, B, 1, INFO ) CALL CHKXER( 'ZSYTRS_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZSYTRS_ROOK( 'U', -1, 0, A, 1, IP, B, 1, INFO ) CALL CHKXER( 'ZSYTRS_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZSYTRS_ROOK( 'U', 0, -1, A, 1, IP, B, 1, INFO ) CALL CHKXER( 'ZSYTRS_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL ZSYTRS_ROOK( 'U', 2, 1, A, 1, IP, B, 2, INFO ) CALL CHKXER( 'ZSYTRS_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 8 CALL ZSYTRS_ROOK( 'U', 2, 1, A, 2, IP, B, 1, INFO ) CALL CHKXER( 'ZSYTRS_ROOK', INFOT, NOUT, LERR, OK ) * * ZSYCON_ROOK * SRNAMT = 'ZSYCON_ROOK' INFOT = 1 CALL ZSYCON_ROOK( '/', 0, A, 1, IP, ANRM, RCOND, W, INFO ) CALL CHKXER( 'ZSYCON_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZSYCON_ROOK( 'U', -1, A, 1, IP, ANRM, RCOND, W, INFO ) CALL CHKXER( 'ZSYCON_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZSYCON_ROOK( 'U', 2, A, 1, IP, ANRM, RCOND, W, INFO ) CALL CHKXER( 'ZSYCON_ROOK', INFOT, NOUT, LERR, OK ) INFOT = 6 CALL ZSYCON_ROOK( 'U', 1, A, 1, IP, -ANRM, RCOND, W, INFO ) CALL CHKXER( 'ZSYCON_ROOK', INFOT, NOUT, LERR, OK ) * * Test error exits of the routines that use factorization * of a symmetric indefinite packed matrix with patrial * (Bunch-Kaufman) pivoting. * ELSE IF( LSAMEN( 2, C2, 'SP' ) ) THEN * * ZSPTRF * SRNAMT = 'ZSPTRF' INFOT = 1 CALL ZSPTRF( '/', 0, A, IP, INFO ) CALL CHKXER( 'ZSPTRF', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZSPTRF( 'U', -1, A, IP, INFO ) CALL CHKXER( 'ZSPTRF', INFOT, NOUT, LERR, OK ) * * ZSPTRI * SRNAMT = 'ZSPTRI' INFOT = 1 CALL ZSPTRI( '/', 0, A, IP, W, INFO ) CALL CHKXER( 'ZSPTRI', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZSPTRI( 'U', -1, A, IP, W, INFO ) CALL CHKXER( 'ZSPTRI', INFOT, NOUT, LERR, OK ) * * ZSPTRS * SRNAMT = 'ZSPTRS' INFOT = 1 CALL ZSPTRS( '/', 0, 0, A, IP, B, 1, INFO ) CALL CHKXER( 'ZSPTRS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZSPTRS( 'U', -1, 0, A, IP, B, 1, INFO ) CALL CHKXER( 'ZSPTRS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZSPTRS( 'U', 0, -1, A, IP, B, 1, INFO ) CALL CHKXER( 'ZSPTRS', INFOT, NOUT, LERR, OK ) INFOT = 7 CALL ZSPTRS( 'U', 2, 1, A, IP, B, 1, INFO ) CALL CHKXER( 'ZSPTRS', INFOT, NOUT, LERR, OK ) * * ZSPRFS * SRNAMT = 'ZSPRFS' INFOT = 1 CALL ZSPRFS( '/', 0, 0, A, AF, IP, B, 1, X, 1, R1, R2, W, R, $ INFO ) CALL CHKXER( 'ZSPRFS', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZSPRFS( 'U', -1, 0, A, AF, IP, B, 1, X, 1, R1, R2, W, R, $ INFO ) CALL CHKXER( 'ZSPRFS', INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZSPRFS( 'U', 0, -1, A, AF, IP, B, 1, X, 1, R1, R2, W, R, $ INFO ) CALL CHKXER( 'ZSPRFS', INFOT, NOUT, LERR, OK ) INFOT = 8 CALL ZSPRFS( 'U', 2, 1, A, AF, IP, B, 1, X, 2, R1, R2, W, R, $ INFO ) CALL CHKXER( 'ZSPRFS', INFOT, NOUT, LERR, OK ) INFOT = 10 CALL ZSPRFS( 'U', 2, 1, A, AF, IP, B, 2, X, 1, R1, R2, W, R, $ INFO ) CALL CHKXER( 'ZSPRFS', INFOT, NOUT, LERR, OK ) * * ZSPCON * SRNAMT = 'ZSPCON' INFOT = 1 CALL ZSPCON( '/', 0, A, IP, ANRM, RCOND, W, INFO ) CALL CHKXER( 'ZSPCON', INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZSPCON( 'U', -1, A, IP, ANRM, RCOND, W, INFO ) CALL CHKXER( 'ZSPCON', INFOT, NOUT, LERR, OK ) INFOT = 5 CALL ZSPCON( 'U', 1, A, IP, -ANRM, RCOND, W, INFO ) CALL CHKXER( 'ZSPCON', INFOT, NOUT, LERR, OK ) END IF * * Print a summary line. * CALL ALAESM( PATH, OK, NOUT ) * RETURN * * End of ZERRSY * END