*> \brief \b CLAROR * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE CLAROR( SIDE, INIT, M, N, A, LDA, ISEED, X, INFO ) * * .. Scalar Arguments .. * CHARACTER INIT, SIDE * INTEGER INFO, LDA, M, N * .. * .. Array Arguments .. * INTEGER ISEED( 4 ) * COMPLEX A( LDA, * ), X( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CLAROR pre- or post-multiplies an M by N matrix A by a random *> unitary matrix U, overwriting A. A may optionally be *> initialized to the identity matrix before multiplying by U. *> U is generated using the method of G.W. Stewart *> ( SIAM J. Numer. Anal. 17, 1980, pp. 403-409 ). *> (BLAS-2 version) *> \endverbatim * * Arguments: * ========== * *> \param[in] SIDE *> \verbatim *> SIDE is CHARACTER*1 *> SIDE specifies whether A is multiplied on the left or right *> by U. *> SIDE = 'L' Multiply A on the left (premultiply) by U *> SIDE = 'R' Multiply A on the right (postmultiply) by UC> SIDE = 'C' Multiply A on the left by U and the right by UC> SIDE = 'T' Multiply A on the left by U and the right by U' *> Not modified. *> \endverbatim *> *> \param[in] INIT *> \verbatim *> INIT is CHARACTER*1 *> INIT specifies whether or not A should be initialized to *> the identity matrix. *> INIT = 'I' Initialize A to (a section of) the *> identity matrix before applying U. *> INIT = 'N' No initialization. Apply U to the *> input matrix A. *> *> INIT = 'I' may be used to generate square (i.e., unitary) *> or rectangular orthogonal matrices (orthogonality being *> in the sense of CDOTC): *> *> For square matrices, M=N, and SIDE many be either 'L' or *> 'R'; the rows will be orthogonal to each other, as will the *> columns. *> For rectangular matrices where M < N, SIDE = 'R' will *> produce a dense matrix whose rows will be orthogonal and *> whose columns will not, while SIDE = 'L' will produce a *> matrix whose rows will be orthogonal, and whose first M *> columns will be orthogonal, the remaining columns being *> zero. *> For matrices where M > N, just use the previous *> explaination, interchanging 'L' and 'R' and "rows" and *> "columns". *> *> Not modified. *> \endverbatim *> *> \param[in] M *> \verbatim *> M is INTEGER *> Number of rows of A. Not modified. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> Number of columns of A. Not modified. *> \endverbatim *> *> \param[in,out] A *> \verbatim *> A is COMPLEX array, dimension ( LDA, N ) *> Input and output array. Overwritten by U A ( if SIDE = 'L' ) *> or by A U ( if SIDE = 'R' ) *> or by U A U* ( if SIDE = 'C') *> or by U A U' ( if SIDE = 'T') on exit. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> Leading dimension of A. Must be at least MAX ( 1, M ). *> Not modified. *> \endverbatim *> *> \param[in,out] ISEED *> \verbatim *> ISEED is INTEGER array, dimension ( 4 ) *> On entry ISEED specifies the seed of the random number *> generator. The array elements should be between 0 and 4095; *> if not they will be reduced mod 4096. Also, ISEED(4) must *> be odd. The random number generator uses a linear *> congruential sequence limited to small integers, and so *> should produce machine independent random numbers. The *> values of ISEED are changed on exit, and can be used in the *> next call to CLAROR to continue the same random number *> sequence. *> Modified. *> \endverbatim *> *> \param[out] X *> \verbatim *> X is COMPLEX array, dimension ( 3*MAX( M, N ) ) *> Workspace. Of length: *> 2*M + N if SIDE = 'L', *> 2*N + M if SIDE = 'R', *> 3*N if SIDE = 'C' or 'T'. *> Modified. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> An error flag. It is set to: *> 0 if no error. *> 1 if CLARND returned a bad random number (installation *> problem) *> -1 if SIDE is not L, R, C, or T. *> -3 if M is negative. *> -4 if N is negative or if SIDE is C or T and N is not equal *> to M. *> -6 if LDA is less than M. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date November 2011 * *> \ingroup complex_matgen * * ===================================================================== SUBROUTINE CLAROR( SIDE, INIT, M, N, A, LDA, ISEED, X, INFO ) * * -- LAPACK auxiliary routine (version 3.4.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2011 * * .. Scalar Arguments .. CHARACTER INIT, SIDE INTEGER INFO, LDA, M, N * .. * .. Array Arguments .. INTEGER ISEED( 4 ) COMPLEX A( LDA, * ), X( * ) * .. * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE, TOOSML PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0, $ TOOSML = 1.0E-20 ) COMPLEX CZERO, CONE PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ), $ CONE = ( 1.0E+0, 0.0E+0 ) ) * .. * .. Local Scalars .. INTEGER IROW, ITYPE, IXFRM, J, JCOL, KBEG, NXFRM REAL FACTOR, XABS, XNORM COMPLEX CSIGN, XNORMS * .. * .. External Functions .. LOGICAL LSAME REAL SCNRM2 COMPLEX CLARND EXTERNAL LSAME, SCNRM2, CLARND * .. * .. External Subroutines .. EXTERNAL CGEMV, CGERC, CLACGV, CLASET, CSCAL, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC ABS, CMPLX, CONJG * .. * .. Executable Statements .. * INFO = 0 IF( N.EQ.0 .OR. M.EQ.0 ) $ RETURN * ITYPE = 0 IF( LSAME( SIDE, 'L' ) ) THEN ITYPE = 1 ELSE IF( LSAME( SIDE, 'R' ) ) THEN ITYPE = 2 ELSE IF( LSAME( SIDE, 'C' ) ) THEN ITYPE = 3 ELSE IF( LSAME( SIDE, 'T' ) ) THEN ITYPE = 4 END IF * * Check for argument errors. * IF( ITYPE.EQ.0 ) THEN INFO = -1 ELSE IF( M.LT.0 ) THEN INFO = -3 ELSE IF( N.LT.0 .OR. ( ITYPE.EQ.3 .AND. N.NE.M ) ) THEN INFO = -4 ELSE IF( LDA.LT.M ) THEN INFO = -6 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'CLAROR', -INFO ) RETURN END IF * IF( ITYPE.EQ.1 ) THEN NXFRM = M ELSE NXFRM = N END IF * * Initialize A to the identity matrix if desired * IF( LSAME( INIT, 'I' ) ) $ CALL CLASET( 'Full', M, N, CZERO, CONE, A, LDA ) * * If no rotation possible, still multiply by * a random complex number from the circle |x| = 1 * * 2) Compute Rotation by computing Householder * Transformations H(2), H(3), ..., H(n). Note that the * order in which they are computed is irrelevant. * DO 40 J = 1, NXFRM X( J ) = CZERO 40 CONTINUE * DO 60 IXFRM = 2, NXFRM KBEG = NXFRM - IXFRM + 1 * * Generate independent normal( 0, 1 ) random numbers * DO 50 J = KBEG, NXFRM X( J ) = CLARND( 3, ISEED ) 50 CONTINUE * * Generate a Householder transformation from the random vector X * XNORM = SCNRM2( IXFRM, X( KBEG ), 1 ) XABS = ABS( X( KBEG ) ) IF( XABS.NE.CZERO ) THEN CSIGN = X( KBEG ) / XABS ELSE CSIGN = CONE END IF XNORMS = CSIGN*XNORM X( NXFRM+KBEG ) = -CSIGN FACTOR = XNORM*( XNORM+XABS ) IF( ABS( FACTOR ).LT.TOOSML ) THEN INFO = 1 CALL XERBLA( 'CLAROR', -INFO ) RETURN ELSE FACTOR = ONE / FACTOR END IF X( KBEG ) = X( KBEG ) + XNORMS * * Apply Householder transformation to A * IF( ITYPE.EQ.1 .OR. ITYPE.EQ.3 .OR. ITYPE.EQ.4 ) THEN * * Apply H(k) on the left of A * CALL CGEMV( 'C', IXFRM, N, CONE, A( KBEG, 1 ), LDA, $ X( KBEG ), 1, CZERO, X( 2*NXFRM+1 ), 1 ) CALL CGERC( IXFRM, N, -CMPLX( FACTOR ), X( KBEG ), 1, $ X( 2*NXFRM+1 ), 1, A( KBEG, 1 ), LDA ) * END IF * IF( ITYPE.GE.2 .AND. ITYPE.LE.4 ) THEN * * Apply H(k)* (or H(k)') on the right of A * IF( ITYPE.EQ.4 ) THEN CALL CLACGV( IXFRM, X( KBEG ), 1 ) END IF * CALL CGEMV( 'N', M, IXFRM, CONE, A( 1, KBEG ), LDA, $ X( KBEG ), 1, CZERO, X( 2*NXFRM+1 ), 1 ) CALL CGERC( M, IXFRM, -CMPLX( FACTOR ), X( 2*NXFRM+1 ), 1, $ X( KBEG ), 1, A( 1, KBEG ), LDA ) * END IF 60 CONTINUE * X( 1 ) = CLARND( 3, ISEED ) XABS = ABS( X( 1 ) ) IF( XABS.NE.ZERO ) THEN CSIGN = X( 1 ) / XABS ELSE CSIGN = CONE END IF X( 2*NXFRM ) = CSIGN * * Scale the matrix A by D. * IF( ITYPE.EQ.1 .OR. ITYPE.EQ.3 .OR. ITYPE.EQ.4 ) THEN DO 70 IROW = 1, M CALL CSCAL( N, CONJG( X( NXFRM+IROW ) ), A( IROW, 1 ), LDA ) 70 CONTINUE END IF * IF( ITYPE.EQ.2 .OR. ITYPE.EQ.3 ) THEN DO 80 JCOL = 1, N CALL CSCAL( M, X( NXFRM+JCOL ), A( 1, JCOL ), 1 ) 80 CONTINUE END IF * IF( ITYPE.EQ.4 ) THEN DO 90 JCOL = 1, N CALL CSCAL( M, CONJG( X( NXFRM+JCOL ) ), A( 1, JCOL ), 1 ) 90 CONTINUE END IF RETURN * * End of CLAROR * END