/*********************************************************************/ /* Copyright 2009, 2010 The University of Texas at Austin. */ /* All rights reserved. */ /* */ /* Redistribution and use in source and binary forms, with or */ /* without modification, are permitted provided that the following */ /* conditions are met: */ /* */ /* 1. Redistributions of source code must retain the above */ /* copyright notice, this list of conditions and the following */ /* disclaimer. */ /* */ /* 2. Redistributions in binary form must reproduce the above */ /* copyright notice, this list of conditions and the following */ /* disclaimer in the documentation and/or other materials */ /* provided with the distribution. */ /* */ /* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */ /* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */ /* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */ /* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */ /* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */ /* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */ /* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */ /* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */ /* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */ /* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */ /* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */ /* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */ /* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */ /* POSSIBILITY OF SUCH DAMAGE. */ /* */ /* The views and conclusions contained in the software and */ /* documentation are those of the authors and should not be */ /* interpreted as representing official policies, either expressed */ /* or implied, of The University of Texas at Austin. */ /*********************************************************************/ /* This file is a template for level 3 operation */ #ifndef BETA_OPERATION #if !defined(XDOUBLE) || !defined(QUAD_PRECISION) #ifndef COMPLEX #define BETA_OPERATION(M_FROM, M_TO, N_FROM, N_TO, BETA, C, LDC) \ GEMM_BETA((M_TO) - (M_FROM), (N_TO - N_FROM), 0, \ BETA[0], NULL, 0, NULL, 0, \ (FLOAT *)(C) + ((M_FROM) + (N_FROM) * (LDC)) * COMPSIZE, LDC) #else #define BETA_OPERATION(M_FROM, M_TO, N_FROM, N_TO, BETA, C, LDC) \ GEMM_BETA((M_TO) - (M_FROM), (N_TO - N_FROM), 0, \ BETA[0], BETA[1], NULL, 0, NULL, 0, \ (FLOAT *)(C) + ((M_FROM) + (N_FROM) * (LDC)) * COMPSIZE, LDC) #endif #else #define BETA_OPERATION(M_FROM, M_TO, N_FROM, N_TO, BETA, C, LDC) \ GEMM_BETA((M_TO) - (M_FROM), (N_TO - N_FROM), 0, \ BETA, NULL, 0, NULL, 0, \ (FLOAT *)(C) + ((M_FROM) + (N_FROM) * (LDC)) * COMPSIZE, LDC) #endif #endif #ifndef ICOPY_OPERATION #if defined(NN) || defined(NT) || defined(NC) || defined(NR) || \ defined(RN) || defined(RT) || defined(RC) || defined(RR) #define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ITCOPY(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER); #else #define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_INCOPY(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER); #endif #endif #ifndef OCOPY_OPERATION #if defined(NN) || defined(TN) || defined(CN) || defined(RN) || \ defined(NR) || defined(TR) || defined(CR) || defined(RR) #define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ONCOPY(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER); #else #define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_OTCOPY(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER); #endif #endif #ifndef KERNEL_FUNC #if defined(NN) || defined(NT) || defined(TN) || defined(TT) #define KERNEL_FUNC GEMM_KERNEL_N #endif #if defined(CN) || defined(CT) || defined(RN) || defined(RT) #define KERNEL_FUNC GEMM_KERNEL_L #endif #if defined(NC) || defined(TC) || defined(NR) || defined(TR) #define KERNEL_FUNC GEMM_KERNEL_R #endif #if defined(CC) || defined(CR) || defined(RC) || defined(RR) #define KERNEL_FUNC GEMM_KERNEL_B #endif #endif #ifndef KERNEL_OPERATION #if !defined(XDOUBLE) || !defined(QUAD_PRECISION) #ifndef COMPLEX #define KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, C, LDC, X, Y) \ KERNEL_FUNC(M, N, K, ALPHA[0], SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC) #else #define KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, C, LDC, X, Y) \ KERNEL_FUNC(M, N, K, ALPHA[0], ALPHA[1], SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC) #endif #else #define KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, C, LDC, X, Y) \ KERNEL_FUNC(M, N, K, ALPHA, SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC) #endif #endif #ifndef FUSED_KERNEL_OPERATION #if defined(NN) || defined(TN) || defined(CN) || defined(RN) || \ defined(NR) || defined(TR) || defined(CR) || defined(RR) #ifndef COMPLEX #define FUSED_KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, B, LDB, C, LDC, I, J, L) \ FUSED_GEMM_KERNEL_N(M, N, K, ALPHA[0], SA, SB, \ (FLOAT *)(B) + ((L) + (J) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC) #else #define FUSED_KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, B, LDB, C, LDC, I, J, L) \ FUSED_GEMM_KERNEL_N(M, N, K, ALPHA[0], ALPHA[1], SA, SB, \ (FLOAT *)(B) + ((L) + (J) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC) #endif #else #ifndef COMPLEX #define FUSED_KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, B, LDB, C, LDC, I, J, L) \ FUSED_GEMM_KERNEL_T(M, N, K, ALPHA[0], SA, SB, \ (FLOAT *)(B) + ((J) + (L) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC) #else #define FUSED_KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, B, LDB, C, LDC, I, J, L) \ FUSED_GEMM_KERNEL_T(M, N, K, ALPHA[0], ALPHA[1], SA, SB, \ (FLOAT *)(B) + ((J) + (L) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC) #endif #endif #endif #ifndef A #define A args -> a #endif #ifndef LDA #define LDA args -> lda #endif #ifndef B #define B args -> b #endif #ifndef LDB #define LDB args -> ldb #endif #ifndef C #define C args -> c #endif #ifndef LDC #define LDC args -> ldc #endif #ifndef M #define M args -> m #endif #ifndef N #define N args -> n #endif #ifndef K #define K args -> k #endif #ifdef TIMING #define START_RPCC() rpcc_counter = rpcc() #define STOP_RPCC(COUNTER) COUNTER += rpcc() - rpcc_counter #else #define START_RPCC() #define STOP_RPCC(COUNTER) #endif int CNAME(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, XFLOAT *sa, XFLOAT *sb, BLASLONG dummy){ BLASLONG k, lda, ldb, ldc; FLOAT *alpha, *beta; FLOAT *a, *b, *c; BLASLONG m_from, m_to, n_from, n_to; BLASLONG ls, is, js; BLASLONG min_l, min_i, min_j; #if !defined(FUSED_GEMM) || defined(TIMING) BLASLONG jjs, min_jj; #endif BLASLONG l1stride, gemm_p, l2size; #if defined(XDOUBLE) && defined(QUAD_PRECISION) xidouble xalpha; #endif #ifdef TIMING unsigned long long rpcc_counter; unsigned long long innercost = 0; unsigned long long outercost = 0; unsigned long long kernelcost = 0; double total; #endif k = K; a = (FLOAT *)A; b = (FLOAT *)B; c = (FLOAT *)C; lda = LDA; ldb = LDB; ldc = LDC; alpha = (FLOAT *)args -> alpha; beta = (FLOAT *)args -> beta; m_from = 0; m_to = M; if (range_m) { m_from = *(((BLASLONG *)range_m) + 0); m_to = *(((BLASLONG *)range_m) + 1); } n_from = 0; n_to = N; if (range_n) { n_from = *(((BLASLONG *)range_n) + 0); n_to = *(((BLASLONG *)range_n) + 1); } if (beta) { #if !defined(XDOUBLE) || !defined(QUAD_PRECISION) #ifndef COMPLEX if (beta[0] != ONE #else if ((beta[0] != ONE) || (beta[1] != ZERO) #endif #else if (((beta[0].x[1] != 0x3fff000000000000UL) || beta[0].x[0] != 0) #ifdef COMPLEX &&(((beta[1].x[0] | beta[1].x[1]) << 1) != 0) #endif #endif ) { #if defined(XDOUBLE) && defined(QUAD_PRECISION) xidouble xbeta; qtox(&xbeta, beta); #endif BETA_OPERATION(m_from, m_to, n_from, n_to, beta, c, ldc); } } if ((k == 0) || (alpha == NULL)) return 0; #if !defined(XDOUBLE) || !defined(QUAD_PRECISION) if ((alpha[0] == ZERO) #ifdef COMPLEX && (alpha[1] == ZERO) #endif ) return 0; #else if (((alpha[0].x[0] | alpha[0].x[1] #ifdef COMPLEX | alpha[1].x[0] | alpha[1].x[1] #endif ) << 1) == 0) return 0; #endif #if defined(XDOUBLE) && defined(QUAD_PRECISION) qtox(&xalpha, alpha); #endif l2size = GEMM_P * GEMM_Q; #if 0 fprintf(stderr, "GEMM(Single): M_from : %ld M_to : %ld N_from : %ld N_to : %ld k : %ld\n", m_from, m_to, n_from, n_to, k); fprintf(stderr, "GEMM(Single):: P = %4ld Q = %4ld R = %4ld\n", (BLASLONG)GEMM_P, (BLASLONG)GEMM_Q, (BLASLONG)GEMM_R); // fprintf(stderr, "GEMM: SA .. %p SB .. %p\n", sa, sb); // fprintf(stderr, "A = %p B = %p C = %p\n\tlda = %ld ldb = %ld ldc = %ld\n", a, b, c, lda, ldb, ldc); #endif #ifdef TIMING innercost = 0; outercost = 0; kernelcost = 0; #endif for(js = n_from; js < n_to; js += GEMM_R){ min_j = n_to - js; if (min_j > GEMM_R) min_j = GEMM_R; for(ls = 0; ls < k; ls += min_l){ min_l = k - ls; if (min_l >= GEMM_Q * 2) { gemm_p = GEMM_P; min_l = GEMM_Q; } else { if (min_l > GEMM_Q) { min_l = (min_l / 2 + GEMM_UNROLL_M - 1) & ~(GEMM_UNROLL_M - 1); } gemm_p = ((l2size / min_l + GEMM_UNROLL_M - 1) & ~(GEMM_UNROLL_M - 1)); while (gemm_p * min_l > l2size) gemm_p -= GEMM_UNROLL_M; } /* First, we have to move data A to L2 cache */ min_i = m_to - m_from; l1stride = 1; if (min_i >= GEMM_P * 2) { min_i = GEMM_P; } else { if (min_i > GEMM_P) { min_i = (min_i / 2 + GEMM_UNROLL_M - 1) & ~(GEMM_UNROLL_M - 1); } else { l1stride = 0; } } START_RPCC(); ICOPY_OPERATION(min_l, min_i, a, lda, ls, m_from, sa); STOP_RPCC(innercost); #if defined(FUSED_GEMM) && !defined(TIMING) FUSED_KERNEL_OPERATION(min_i, min_j, min_l, alpha, sa, sb, b, ldb, c, ldc, m_from, js, ls); #else for(jjs = js; jjs < js + min_j; jjs += min_jj){ min_jj = min_j + js - jjs; if (min_jj >= 3*GEMM_UNROLL_N) min_jj = 3*GEMM_UNROLL_N; else if (min_jj >= 2*GEMM_UNROLL_N) min_jj = 2*GEMM_UNROLL_N; else if (min_jj > GEMM_UNROLL_N) min_jj = GEMM_UNROLL_N; START_RPCC(); OCOPY_OPERATION(min_l, min_jj, b, ldb, ls, jjs, sb + min_l * (jjs - js) * COMPSIZE * l1stride); STOP_RPCC(outercost); START_RPCC(); #if !defined(XDOUBLE) || !defined(QUAD_PRECISION) KERNEL_OPERATION(min_i, min_jj, min_l, alpha, sa, sb + min_l * (jjs - js) * COMPSIZE * l1stride, c, ldc, m_from, jjs); #else KERNEL_OPERATION(min_i, min_jj, min_l, (void *)&xalpha, sa, sb + min_l * (jjs - js) * COMPSIZE * l1stride, c, ldc, m_from, jjs); #endif STOP_RPCC(kernelcost); } #endif for(is = m_from + min_i; is < m_to; is += min_i){ min_i = m_to - is; if (min_i >= GEMM_P * 2) { min_i = GEMM_P; } else if (min_i > GEMM_P) { min_i = (min_i / 2 + GEMM_UNROLL_M - 1) & ~(GEMM_UNROLL_M - 1); } START_RPCC(); ICOPY_OPERATION(min_l, min_i, a, lda, ls, is, sa); STOP_RPCC(innercost); START_RPCC(); #if !defined(XDOUBLE) || !defined(QUAD_PRECISION) KERNEL_OPERATION(min_i, min_j, min_l, alpha, sa, sb, c, ldc, is, js); #else KERNEL_OPERATION(min_i, min_j, min_l, (void *)&xalpha, sa, sb, c, ldc, is, js); #endif STOP_RPCC(kernelcost); } /* end of is */ } /* end of js */ } /* end of ls */ #ifdef TIMING total = (double)outercost + (double)innercost + (double)kernelcost; printf( "Copy A : %5.2f Copy B: %5.2f Kernel : %5.2f kernel Effi. : %5.2f Total Effi. : %5.2f\n", innercost / total * 100., outercost / total * 100., kernelcost / total * 100., (double)(m_to - m_from) * (double)(n_to - n_from) * (double)k / (double)kernelcost * 100. * (double)COMPSIZE / 2., (double)(m_to - m_from) * (double)(n_to - n_from) * (double)k / total * 100. * (double)COMPSIZE / 2.); #endif return 0; }