/*********************************************************************/ /* Copyright 2009, 2010 The University of Texas at Austin. */ /* All rights reserved. */ /* */ /* Redistribution and use in source and binary forms, with or */ /* without modification, are permitted provided that the following */ /* conditions are met: */ /* */ /* 1. Redistributions of source code must retain the above */ /* copyright notice, this list of conditions and the following */ /* disclaimer. */ /* */ /* 2. Redistributions in binary form must reproduce the above */ /* copyright notice, this list of conditions and the following */ /* disclaimer in the documentation and/or other materials */ /* provided with the distribution. */ /* */ /* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */ /* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */ /* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */ /* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */ /* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */ /* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */ /* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */ /* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */ /* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */ /* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */ /* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */ /* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */ /* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */ /* POSSIBILITY OF SUCH DAMAGE. */ /* */ /* The views and conclusions contained in the software and */ /* documentation are those of the authors and should not be */ /* interpreted as representing official policies, either expressed */ /* or implied, of The University of Texas at Austin. */ /*********************************************************************/ #ifndef CACHE_LINE_SIZE #define CACHE_LINE_SIZE 8 #endif #ifndef DIVIDE_RATE #define DIVIDE_RATE 2 #endif #ifndef SWITCH_RATIO #define SWITCH_RATIO 2 #endif //The array of job_t may overflow the stack. //Instead, use malloc to alloc job_t. #if MAX_CPU_NUMBER > BLAS3_MEM_ALLOC_THRESHOLD #define USE_ALLOC_HEAP #endif #ifndef SYRK_LOCAL #if !defined(LOWER) && !defined(TRANS) #define SYRK_LOCAL SYRK_UN #elif !defined(LOWER) && defined(TRANS) #define SYRK_LOCAL SYRK_UT #elif defined(LOWER) && !defined(TRANS) #define SYRK_LOCAL SYRK_LN #else #define SYRK_LOCAL SYRK_LT #endif #endif typedef struct { volatile BLASLONG working[MAX_CPU_NUMBER][CACHE_LINE_SIZE * DIVIDE_RATE]; } job_t; #ifndef KERNEL_OPERATION #ifndef COMPLEX #define KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, C, LDC, X, Y) \ KERNEL_FUNC(M, N, K, ALPHA[0], SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC, (X) - (Y)) #else #define KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, C, LDC, X, Y) \ KERNEL_FUNC(M, N, K, ALPHA[0], ALPHA[1], SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC, (X) - (Y)) #endif #endif #ifndef ICOPY_OPERATION #ifndef TRANS #define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ITCOPY(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER); #else #define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_INCOPY(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER); #endif #endif #ifndef OCOPY_OPERATION #ifdef TRANS #define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ONCOPY(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER); #else #define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_OTCOPY(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER); #endif #endif #ifndef A #define A args -> a #endif #ifndef LDA #define LDA args -> lda #endif #ifndef C #define C args -> c #endif #ifndef LDC #define LDC args -> ldc #endif #ifndef M #define M args -> m #endif #ifndef N #define N args -> n #endif #ifndef K #define K args -> k #endif #undef TIMING #ifdef TIMING #define START_RPCC() rpcc_counter = rpcc() #define STOP_RPCC(COUNTER) COUNTER += rpcc() - rpcc_counter #else #define START_RPCC() #define STOP_RPCC(COUNTER) #endif static int inner_thread(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG mypos){ FLOAT *buffer[DIVIDE_RATE]; BLASLONG k, lda, ldc; BLASLONG m_from, m_to, n_from, n_to; FLOAT *alpha, *beta; FLOAT *a, *c; job_t *job = (job_t *)args -> common; BLASLONG xxx, bufferside; BLASLONG ls, min_l, jjs, min_jj; BLASLONG is, min_i, div_n; BLASLONG i, current; #ifdef LOWER BLASLONG start_i; #endif #ifdef TIMING BLASLONG rpcc_counter; BLASLONG copy_A = 0; BLASLONG copy_B = 0; BLASLONG kernel = 0; BLASLONG waiting1 = 0; BLASLONG waiting2 = 0; BLASLONG waiting3 = 0; BLASLONG waiting6[MAX_CPU_NUMBER]; BLASLONG ops = 0; for (i = 0; i < args -> nthreads; i++) waiting6[i] = 0; #endif k = K; a = (FLOAT *)A; c = (FLOAT *)C; lda = LDA; ldc = LDC; alpha = (FLOAT *)args -> alpha; beta = (FLOAT *)args -> beta; m_from = 0; m_to = N; /* Global Range */ n_from = 0; n_to = N; if (range_n) { m_from = range_n[mypos + 0]; m_to = range_n[mypos + 1]; n_from = range_n[0]; n_to = range_n[args -> nthreads]; } if (beta) { #if !defined(COMPLEX) || defined(HERK) if (beta[0] != ONE) #else if ((beta[0] != ONE) || (beta[1] != ZERO)) #endif syrk_beta(m_from, m_to, n_from, n_to, beta, c, ldc); } if ((k == 0) || (alpha == NULL)) return 0; if ((alpha[0] == ZERO) #if defined(COMPLEX) && !defined(HERK) && (alpha[1] == ZERO) #endif ) return 0; #if 0 fprintf(stderr, "Thread[%ld] m_from : %ld m_to : %ld n_from : %ld n_to : %ld\n", mypos, m_from, m_to, n_from, n_to); #endif div_n = ((m_to - m_from + DIVIDE_RATE - 1) / DIVIDE_RATE + GEMM_UNROLL_MN - 1) & ~(GEMM_UNROLL_MN - 1); buffer[0] = sb; for (i = 1; i < DIVIDE_RATE; i++) { buffer[i] = buffer[i - 1] + GEMM_Q * div_n * COMPSIZE; } for(ls = 0; ls < k; ls += min_l){ min_l = k - ls; if (min_l >= GEMM_Q * 2) { min_l = GEMM_Q; } else { if (min_l > GEMM_Q) min_l = (min_l + 1) / 2; } min_i = m_to - m_from; if (min_i >= GEMM_P * 2) { min_i = GEMM_P; } else { if (min_i > GEMM_P) { min_i = (min_i / 2 + GEMM_UNROLL_MN - 1) & ~(GEMM_UNROLL_MN - 1); } } #ifdef LOWER xxx = (m_to - m_from - min_i) % GEMM_P; if (xxx) min_i -= GEMM_P - xxx; #endif START_RPCC(); #ifndef LOWER ICOPY_OPERATION(min_l, min_i, a, lda, ls, m_from, sa); #else ICOPY_OPERATION(min_l, min_i, a, lda, ls, m_to - min_i, sa); #endif STOP_RPCC(copy_A); div_n = ((m_to - m_from + DIVIDE_RATE - 1) / DIVIDE_RATE + GEMM_UNROLL_MN - 1) & ~(GEMM_UNROLL_MN - 1); for (xxx = m_from, bufferside = 0; xxx < m_to; xxx += div_n, bufferside ++) { START_RPCC(); /* Make sure if no one is using buffer */ #ifndef LOWER for (i = 0; i < mypos; i++) #else for (i = mypos + 1; i < args -> nthreads; i++) #endif while (job[mypos].working[i][CACHE_LINE_SIZE * bufferside]) {YIELDING;}; STOP_RPCC(waiting1); #ifndef LOWER for(jjs = xxx; jjs < MIN(m_to, xxx + div_n); jjs += min_jj){ min_jj = MIN(m_to, xxx + div_n) - jjs; if (xxx == m_from) { if (min_jj > min_i) min_jj = min_i; } else { if (min_jj > GEMM_UNROLL_MN) min_jj = GEMM_UNROLL_MN; } START_RPCC(); OCOPY_OPERATION(min_l, min_jj, a, lda, ls, jjs, buffer[bufferside] + min_l * (jjs - xxx) * COMPSIZE); STOP_RPCC(copy_B); START_RPCC(); KERNEL_OPERATION(min_i, min_jj, min_l, alpha, sa, buffer[bufferside] + min_l * (jjs - xxx) * COMPSIZE, c, ldc, m_from, jjs); STOP_RPCC(kernel); #ifdef TIMING ops += 2 * min_i * min_jj * min_l; #endif } #else for(jjs = xxx; jjs < MIN(m_to, xxx + div_n); jjs += min_jj){ min_jj = MIN(m_to, xxx + div_n) - jjs; if (min_jj > GEMM_UNROLL_MN) min_jj = GEMM_UNROLL_MN; START_RPCC(); OCOPY_OPERATION(min_l, min_jj, a, lda, ls, jjs, buffer[bufferside] + min_l * (jjs - xxx) * COMPSIZE); STOP_RPCC(copy_B); START_RPCC(); KERNEL_OPERATION(min_i, min_jj, min_l, alpha, sa, buffer[bufferside] + min_l * (jjs - xxx) * COMPSIZE, c, ldc, m_to - min_i, jjs); STOP_RPCC(kernel); #ifdef TIMING ops += 2 * min_i * min_jj * min_l; #endif } #endif #ifndef LOWER for (i = 0; i <= mypos; i++) #else for (i = mypos; i < args -> nthreads; i++) #endif job[mypos].working[i][CACHE_LINE_SIZE * bufferside] = (BLASLONG)buffer[bufferside]; WMB; } #ifndef LOWER current = mypos + 1; while (current < args -> nthreads) { #else current = mypos - 1; while (current >= 0) { #endif div_n = ((range_n[current + 1] - range_n[current] + DIVIDE_RATE - 1) / DIVIDE_RATE + GEMM_UNROLL_MN - 1) & ~(GEMM_UNROLL_MN - 1); for (xxx = range_n[current], bufferside = 0; xxx < range_n[current + 1]; xxx += div_n, bufferside ++) { START_RPCC(); /* thread has to wait */ while(job[current].working[mypos][CACHE_LINE_SIZE * bufferside] == 0) {YIELDING;}; STOP_RPCC(waiting2); START_RPCC(); #ifndef LOWER KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - xxx, div_n), min_l, alpha, sa, (FLOAT *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside], c, ldc, m_from, xxx); #else KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - xxx, div_n), min_l, alpha, sa, (FLOAT *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside], c, ldc, m_to - min_i, xxx); #endif STOP_RPCC(kernel); #ifdef TIMING ops += 2 * min_i * MIN(range_n[current + 1] - xxx, div_n) * min_l; #endif if (m_to - m_from == min_i) { job[current].working[mypos][CACHE_LINE_SIZE * bufferside] &= 0; } } #ifndef LOWER current ++; #else current --; #endif } #ifndef LOWER for(is = m_from + min_i; is < m_to; is += min_i){ min_i = m_to - is; #else start_i = min_i; for(is = m_from; is < m_to - start_i; is += min_i){ min_i = m_to - start_i - is; #endif if (min_i >= GEMM_P * 2) { min_i = GEMM_P; } else if (min_i > GEMM_P) { min_i = ((min_i + 1) / 2 + GEMM_UNROLL_MN - 1) & ~(GEMM_UNROLL_MN - 1); } START_RPCC(); ICOPY_OPERATION(min_l, min_i, a, lda, ls, is, sa); STOP_RPCC(copy_A); current = mypos; do { div_n = ((range_n[current + 1] - range_n[current] + DIVIDE_RATE - 1) / DIVIDE_RATE + GEMM_UNROLL_MN - 1) & ~(GEMM_UNROLL_MN - 1); for (xxx = range_n[current], bufferside = 0; xxx < range_n[current + 1]; xxx += div_n, bufferside ++) { START_RPCC(); KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - xxx, div_n), min_l, alpha, sa, (FLOAT *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside], c, ldc, is, xxx); STOP_RPCC(kernel); #ifdef TIMING ops += 2 * min_i * MIN(range_n[current + 1] - xxx, div_n) * min_l; #endif #ifndef LOWER if (is + min_i >= m_to) { #else if (is + min_i >= m_to - start_i) { #endif /* Thread doesn't need this buffer any more */ job[current].working[mypos][CACHE_LINE_SIZE * bufferside] &= 0; WMB; } } #ifndef LOWER current ++; } while (current != args -> nthreads); #else current --; } while (current >= 0); #endif } } START_RPCC(); for (i = 0; i < args -> nthreads; i++) { if (i != mypos) { for (xxx = 0; xxx < DIVIDE_RATE; xxx++) { while (job[mypos].working[i][CACHE_LINE_SIZE * xxx] ) {YIELDING;}; } } } STOP_RPCC(waiting3); #ifdef TIMING BLASLONG waiting = waiting1 + waiting2 + waiting3; BLASLONG total = copy_A + copy_B + kernel + waiting; fprintf(stderr, "GEMM [%2ld] Copy_A : %6.2f Copy_B : %6.2f Wait1 : %6.2f Wait2 : %6.2f Wait3 : %6.2f Kernel : %6.2f", mypos, (double)copy_A /(double)total * 100., (double)copy_B /(double)total * 100., (double)waiting1 /(double)total * 100., (double)waiting2 /(double)total * 100., (double)waiting3 /(double)total * 100., (double)ops/(double)kernel / 4. * 100.); #if 0 fprintf(stderr, "GEMM [%2ld] Copy_A : %6.2ld Copy_B : %6.2ld Wait : %6.2ld\n", mypos, copy_A, copy_B, waiting); fprintf(stderr, "Waiting[%2ld] %6.2f %6.2f %6.2f\n", mypos, (double)waiting1/(double)waiting * 100., (double)waiting2/(double)waiting * 100., (double)waiting3/(double)waiting * 100.); #endif fprintf(stderr, "\n"); #endif return 0; } int CNAME(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG mypos){ blas_arg_t newarg; #ifndef USE_ALLOC_HEAP job_t job[MAX_CPU_NUMBER]; #else job_t * job = NULL; #endif blas_queue_t queue[MAX_CPU_NUMBER]; BLASLONG range[MAX_CPU_NUMBER + 100]; BLASLONG num_cpu; BLASLONG nthreads = args -> nthreads; BLASLONG width, i, j, k; BLASLONG n, n_from, n_to; int mode, mask; double dnum; if ((nthreads == 1) || (args -> n < nthreads * SWITCH_RATIO)) { SYRK_LOCAL(args, range_m, range_n, sa, sb, 0); return 0; } #ifndef COMPLEX #ifdef XDOUBLE mode = BLAS_XDOUBLE | BLAS_REAL; mask = MAX(QGEMM_UNROLL_M, QGEMM_UNROLL_N) - 1; #elif defined(DOUBLE) mode = BLAS_DOUBLE | BLAS_REAL; mask = DGEMM_UNROLL_MN - 1; #else mode = BLAS_SINGLE | BLAS_REAL; mask = SGEMM_UNROLL_MN - 1; #endif #else #ifdef XDOUBLE mode = BLAS_XDOUBLE | BLAS_COMPLEX; mask = MAX(XGEMM_UNROLL_M, XGEMM_UNROLL_N) - 1; #elif defined(DOUBLE) mode = BLAS_DOUBLE | BLAS_COMPLEX; mask = ZGEMM_UNROLL_MN - 1; #else mode = BLAS_SINGLE | BLAS_COMPLEX; mask = CGEMM_UNROLL_MN - 1; #endif #endif newarg.m = args -> m; newarg.n = args -> n; newarg.k = args -> k; newarg.a = args -> a; newarg.b = args -> b; newarg.c = args -> c; newarg.lda = args -> lda; newarg.ldb = args -> ldb; newarg.ldc = args -> ldc; newarg.alpha = args -> alpha; newarg.beta = args -> beta; #ifdef USE_ALLOC_HEAP job = (job_t*)malloc(MAX_CPU_NUMBER * sizeof(job_t)); if(job==NULL){ fprintf(stderr, "OpenBLAS: malloc failed in %s\n", __func__); exit(1); } #endif newarg.common = (void *)job; if (!range_n) { n_from = 0; n_to = args -> n; } else { n_from = range_n[0]; n_to = range_n[1] - range_n[0]; } #ifndef LOWER range[MAX_CPU_NUMBER] = n_to - n_from; range[0] = 0; num_cpu = 0; i = 0; n = n_to - n_from; dnum = (double)n * (double)n /(double)nthreads; while (i < n){ if (nthreads - num_cpu > 1) { double di = (double)i; width = (((BLASLONG)(sqrt(di * di + dnum) - di) + mask) & ~mask); if (num_cpu == 0) width = n - ((n - width) & ~mask); if ((width > n - i) || (width < mask)) width = n - i; } else { width = n - i; } range[MAX_CPU_NUMBER - num_cpu - 1] = range[MAX_CPU_NUMBER - num_cpu] - width; queue[num_cpu].mode = mode; queue[num_cpu].routine = inner_thread; queue[num_cpu].args = &newarg; queue[num_cpu].range_m = range_m; queue[num_cpu].sa = NULL; queue[num_cpu].sb = NULL; queue[num_cpu].next = &queue[num_cpu + 1]; num_cpu ++; i += width; } for (i = 0; i < num_cpu; i ++) queue[i].range_n = &range[MAX_CPU_NUMBER - num_cpu]; #else range[0] = 0; num_cpu = 0; i = 0; n = n_to - n_from; dnum = (double)n * (double)n /(double)nthreads; while (i < n){ if (nthreads - num_cpu > 1) { double di = (double)i; width = (((BLASLONG)(sqrt(di * di + dnum) - di) + mask) & ~mask); if ((width > n - i) || (width < mask)) width = n - i; } else { width = n - i; } range[num_cpu + 1] = range[num_cpu] + width; queue[num_cpu].mode = mode; queue[num_cpu].routine = inner_thread; queue[num_cpu].args = &newarg; queue[num_cpu].range_m = range_m; queue[num_cpu].range_n = range; queue[num_cpu].sa = NULL; queue[num_cpu].sb = NULL; queue[num_cpu].next = &queue[num_cpu + 1]; num_cpu ++; i += width; } #endif newarg.nthreads = num_cpu; if (num_cpu) { for (j = 0; j < num_cpu; j++) { for (i = 0; i < num_cpu; i++) { for (k = 0; k < DIVIDE_RATE; k++) { job[j].working[i][CACHE_LINE_SIZE * k] = 0; } } } queue[0].sa = sa; queue[0].sb = sb; queue[num_cpu - 1].next = NULL; exec_blas(num_cpu, queue); } #ifdef USE_ALLOC_HEAP free(job); #endif return 0; }